Solution of Different Types of
Differential Equations

4 Marks Questions

1. Find the particular solution of the differential
4y =1+ x+y+xy, giventhaty =0

equation —
dx
when x = 1. All India 2014

Given differential equation is
dy
— =T+ X+y+ Xy

ax

s Y 1+ 9+yd+x)
clx

i Y o1+ 00+y) L) ()
dx

On separating variables, we get

1 dy = (1+ x) dx
(1+y)

On integrating both sides of Eq. (ii), we get

1
—dy= |1+ Xd
1+y / -[( v

suskll)
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2
= log|1+y|=x+3‘2—+c i) @)

Also, given thaty =0, when x =1.
On substituting x =1,y =0 in Eq. (iii), we get

1
Iog|1+0|=1+5+C=rC=—l;~ [ log1=0]
(1)

Now, on substituting the value of C in Eq.
(i), we get
2
X 3
logli+y|=x+—-=
gli+y] i
which is the required particular solution of

given differential equation. (1)

2. Find the particular solution of the differential
dy ¥

equation x — — y + X Cosec (] =0 or
dx X

dy ¥ +cosec(1) =0, given that y =0, when
dx x X

x=1 ‘All India 2014C, 2011; Delhi 2009
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Given differential equation is

xﬂ = y+xcosec(x-)=()

dx X
=3 ﬂ—X+m:c;\s"?:r:(z]=0
dx x X
Above equation can be written as
cirX: Y _ cosec (Z] ..(1)
dx x X

which is a homogeneous differential equation.

On puttingy = vx,

— &=v+xﬁinEq.(i),weget
dx dx
dv  vx (vx)
V+X—=——cosec| —
X X X
dv
= V+ X— =V — COSeC V
dx
dv dv —dx
=3 X — = — Cosecv = = (1)
dx cosecyv X
On integrating both sides, we get
j dv . E]'i
cosec v X

:>Isinvdv= —% [ ! :sinv]

X cosecv

= —cosv=—log|x|+C

,: '.'J‘sinxdx:wcosx+C

and_[ldx=log|x|+(f]
X
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On putting v = X, we get
X

- cos L =—log|x|+C

X

= cosz=+(log|x|-—C)
X
. -1

— ~=cos  (log|x|-C)
X

= y =xcos” (log|x|-C) ...(i0) (1%)

Also, given that x =1 and y = 0.
On putting above values in Eq. (ii), we get

0 =1cos ' (log|1- C)

—J cos0°=0-C
= 1=0-C
= C=-1
y = xcos” (log| x|+1) (1%)

which is required solution.

3. Solve the differential equation
x logx j—y +y= £ log x. Foreign 2014; Delhi 2009
X X
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Given differential equation is

[xlogx)-ﬁ—i-y:giogx
dx X

On dividing both sides by x log x, we get
dy y 2 logx 2
T = — —

dx xlogx x?logx x?

()

which is a linear differential equation of first
order and is of the form

9'-}-{+Py=Q ...(ii)
dx |
On comparing Eqs. (i) and (ii), we get
B 1 and Q = 2 (1)
x log x x°

f11 S e
IF = e Xlogx  _ ploglogx

forj' : dx::,putlog'x:t-—:fldx:dt
x log x X

.'.Itldt=|og|t|=10gglogx|

= IF = log x [+ e'°B% = x]
(1

Now, solution of above equation is given by
y xIF= [(QxIF)dx+C ...(iii)
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On putting IF =log x and Q =_§2_ in Eq. (iii),

X

we get

ylogx=jj—2logxdx
T

yiogx=|ong%dx
X

_j(%(logx)-J%dx}dx

[using integration by parts]

yiogx=logx-2(— 1]
X

—Il'?_(—l)dxﬁ)
X X

ylogx=-—zlogx— 'g(wl)dx
. i

x\ X
2 > 2
ylogx=—~x-|ogx+. Fdx
ylogx:—glogx—?~+c (1)
X X

which is the required solution.

4. Find the general solution of the differential

equation (x — y) 2 X+ 2y.
| dx
Delhi 2014C; All india 2010
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Given differential equation is

(x—y)%=x+2y
R dy:x+2y L0 M
dx. x-vy

which is a homogeneous equation.
On putting y = vx

=3 L =y4X— ...(i1)

in Eq. (i), we get
dv_ x+2vx _1+2v

V+ X
dx  X—vx 1-v
dv  1+2v L W
== X —— —-V=
dx 1-v 1-v
dv 1+ v+ v?
= i
dx 1—v
=% 21-—v czhwzgi
vi+v+1 X
On integrating both sides, we get
1= d
[IRETAE g
+v+1 X
=% |=log|x]+C .. (i)
where, I=Iﬂ3~1_—vdv
VoA 4]
Let 1—V2A'—g—(V2+V+1)+B
dv
= 1-v=AQv+1)+8B

On comparing coefficients of v and constant
term from both sides, we get

2A=-1 = A=—% and A+B=1

=>-l+B=1 = B=1+~1—:=:> B=E
2 2 2

So, wewritel—v=—%(2v+1)+-§’—

1 3
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—l@v+N+T

Then,i=j 22 2 dv
vi+v+
2v +1 3 dv
= l—-— iRl QRS -
j +v+1 2‘|.V2+V+1

= I=——5!og|v +v+1

+§'I dv

v2+v+1+1—
4

L
4
#——ﬂ—-dv:—putvz+v+l=t
vi+v+1

Qv+ 1) dv=dt

.'.I%r—Iog|t|+c=|og|v2+v+1l+c

dv

(r+3)
v+ | +
2 4

1 3
l=—=log|v}+v+1+=
= 3 og|v | 2_[

=/=-=log|v +v+1|
1
-
s il +C
V3 V3
2
_[ dxzzlt ' XicC
x“+a® a a
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= ;'=——1—I0g[v2 +v+1|

2
- = tan'{zv 3 1) +C

Nl W

On puttingv = X , we get
o s |
== — log |+ L +1|++/3 tan™ T+
)| Bl x T J3
[ y=vx.'.v—x:l
X
e Diog v
2 | X |
i 2y + x
++3tan )+C
(%

On putting the value of I in Eq. (iii), we get

1 ’y +xy+x| \/—ta_I(Zyti)
|

2 | x? J3x
=log|x|+C
which is the required solution. (1)

5. Find the particular solution of the differential

equation {x sin’ (1) - y} dx + xdy =0, given
X

thaty = E— when x = 1. All India 2014C

Get More Learning Materials Here : & m @&\ www.studentbro.in



Given differential equation is

{xsinz(z]~yj|dx+xdy=0

X

R
dy y — X Si 5

= = (D)
dx X
which is a homogeneous differential equation.
Puty = vx::»@-v+r~—m Eq. ( ) we get
dx
vx — xsin?| 2
dv X
V4 X—=
dx
dv 2 dv i 9
= V+X—=V-=5in“V = Xx-—=-5in“V
dx dx
dx
= cosec’ v dv =—-—— (1)
X

On integrating both sides, we get
J cosec’ vdv + j% =0
X

=  —cotv+log|x|=

C
:—cot(z)+log|x|:(f ['.'szr:] sxatl}
X X
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Also, given thaty = E, when x =1.

On putting x=T1and y = % in Eq. (ii), we get

- cot(n) +log1=C
4

= C=-1 [ cotE—l] (1)
4

On putting this value of C in Eq. (ii), we get
—cot(Z)+ loglx{=1
_ X

= 1+ log| x|— cot(y) =0
X

which is the required particular solution of
given differential equation. (1)

6. Find the particular solution of the differential
equation
dy  x(2logx+1)
E;_siny+ycosy
X=1 Delhi 2014

, given that y = 12[-, when

Get More Learning Materials Here : & m @&\ www.studentbro.in



Given differential equation is
dy _ x2logx+1)
dx siny+ycosy

On separating the variables, we get

(siny +y cosy) dy = x(2 log x + 1) dx
=sinydy +y cosydy =2xlog xdx + xdx (1)
On integrating both sides, we get

Jsinydy+-['}|/c:l)sydy
=2jl)l(lolrgxdx+jxdx

=>—cosy+[yjcosydy
d
— fr— dyy d
J{ dy (y}jcosy y} y]
=2|1 d 9 PP
= [ngjx X—j{a{ogx)jx x} x:‘-}-?

| (1)
:>—cosy+y5iny—Jsinydy

2 2 2
X 1 X X
=2|—logx— e ] A

= —Ccosy+ysiny+ cosy
J it
=X 10g X~ | XaxXx+ —
gx~ | 3

2 xf-_'

; 2 X
= siny=x“logx——+—+C
y y g 5 5
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= ysiny:)-:2 log x + C LD (D

Also, given thaty = g, when x=1

On puttingy = g— and x =1in Eq. (i), we get
T i [—E) =1)?log (1) +C
2 2

— C=m | sinE=1,I0g1:0:|
2 2

On substituting the value of C in Eqg. (i), we

get

y siny = x° Iogx+§

which is the required particular solution. (1)

7. Solve the following differential equation
2 dy 2
x“—=1) =+ 2xy = .
( ) Gy AR SRR
Delhi 2014; All India 2014C
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f F|rstly, divide the glven differential equa’clon by
% (x*-1) to convert it into the form of Imear
d[fferentzai equation and then so1ve it '

Given differential equation is

dy 2
(x° = 1) =L +2xy =
dx g x2 -1
On dividing both sides by (x* — 1), we get
dy " 2x g 2
e y e fe? =)
which is a linear differential equation. (1)
On comparing with the form %Y— + Py =Q, we
X
2X 2
et P= ,Q=—
R x* —1 (x% — 1y
2x
j ———————— dx
Feg *~ (1)
elog|x2ﬁ1| _ X2 —1
putx? — 1=t = 2xdx —dtlnj " 1dx then
dx= | -dt =logt = log(x* =1
_'[ x? =1 Jt N

Hence, the required general solution is
y-IF=J Q xIFdx+C
2

= y(x2—1)='[ Wx(x2—1)dx+(: (1)
X —

dx +C

2
= y(x2—1)=_[ 7
x AT
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=  yix*-1)=log -’5-1-1|+c
X+1]
1 1, Ix-a
.-l d : 10
|: Ixz—a2 i 2a g:J<+a}

which is the required differential equation. (1)

8. Find the particular solution of the differential

equation e®4/1 — y2 dx+ 7 dy =0, given that
X

y =1, when x=0. Delhi 2014
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Given differential equation is
e® J1=y* dx+£dy=0
X
X 2 . ¥
=% e’ J1-y* dx=—=dy
X
On separating the variables, we get
—Y_ dy = x e'dx (1)
\1- y2
On integrating both sides, we get

j\/_dy:jxe"dx

On putting 1— yi=t=-ydy= %t-_in LHS, we

get

-[2_de >|(€;t dx

= %[2&]=xj‘e"dx—j [—%(x)je"dx]dx
= 1!1—y2=xe"—-J.e"dx [ot=1-y7]

(1)
= J1I-y* =xe*—e*+C ..0)

Also, given thaty =1 when x =0
On puttingy =1and x =0 in Eq. (i), we get
1-1=0-e°+C

= C =1 [ e®=1](1)
On substituting the value of C in Eq. (i), we

get
JI-yt=xe* —e* +1

which is the required particular solution of
given differential equation. (1)
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9. Solve the following differential equation

cosec x logy 3_}/ + x%y? =0. Delhi 2014
X

|':> Ftrstly, separate the vanables, then lntegrate by
= using integration by parts.

Given differential equation is

cosec x log y j—y +xy?=0 ...(0)
X

It can be rewritten as

cosec x logy gy = — x?
dx

On separating the variables, we get
2

lo8Y 4y X
y Cosec X

On integrating both sides, we get
log y X i
—=dy=- dx =h=1, ..ii)
I y2 d J COSeCX e

(1)
where, |, = _[ ;—%X dy

Putlogy=t=->y=e‘,theng¥-=dt
y

L=| te'dt
Lo

= tj e”'dt - _[ [% (t) J' e*“dt] dt
= - E‘_t.— j (—e_t) dt

=—te™ +j eldt=—-te "' -e"'+C,

st L ...(iii) (1)
|V-:r =lanogvand o7t = 1-|
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I_' - R = St yJ

.
and /, = —-J dx
cosecx

=—| x%sinxdx

! It

= —xz_[ sin x dx —_[ g; (xz)J sin x dx] dx

=—x? (- cosx) — : [2x(— cos x)] dx

= x2 cosx+2J' fcosxdx
il

= x? cosx+2[xjcosxdx

4 |
—I{a; (x}jcosxdx} dx
= x% cos x + 2 [x sinx—_[sinxdx]

=x* cos X +2xsinx+2 cosx+C, ...(iv)

(1
On putting the values of /; and /, from Eqs.(iii)

- =27 . _+C,=x% cosx+ 2x sin x
y y
+2 cosx+C,
1+
-(—'u)-g‘--’-'f}-=x2 COS X+ 2Xxsinx
y
+2cosx+C,—C,
—(—1-"-'--[5-)--3-)2=:z<2 COS X + 2X sin X
y

+2cosx+C
where, C =C, - C,

which is the required solution of given
differential equation. (1)
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10. Find the particular solution of the differential
equation x(1 + y%) dx — y (1 + x*) dy =0, given
thaty =1, when x=0. All India 2014

Given differential equation is

x(1+y) dx —y(1+ x?) dy =0
=  x(1+y)dx=y(l+x%) dy

On separating the variables, we get

y X
dy = d 1
1+ y?) : (1+ x2) * 3

On integrating both sides, we get

y _ X
I1+y2dy_j(1+x2)dx

= 2llog|1+y2|=%log|1+x2|+C (i)
Flet1+y2=u = 2y dy =du,

1 1
then Y _dy= —du=—log|u
‘[ 1+y? d IZU ¥, Blul

and let1+ x? =v = 2xdx =dv,

thenJ' 2 dx=%jldv:%log|vf
v

3 14 %% 1
Also, given thaty =1, when x =0. (1)
On substituting the values of x and y in Eq. (i),
we get

Liog|1+ M = Ylog |1+ @) +C

2 2
= %logz =C [ log1=10]
On putting C = 21 log 2 in Eq. (i), we get

1 1 1
—log|1+vY=—log|1+ x% + —log 2
; g|1+y”| ; g| I 5 o8
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= log|1+y? =log|1+ x% + log 2 (1)

= log|1+y? —log| 1+ x*| =log 2

2
= log 1-1-)-/-5 =log 2 [ Iogm—lognzloginw]
T+x7| n
2
™ 1+y2=2
14X
=5 1+y?=2+2x2 = y?2-2x?-1=0

which is the required particular solution of
given differential equation. (1)

11. Find the particular solution of the differential

equation log [?) = 3x + 4y equation, given
X

that y =0, when x =0, All India 2014

Get More Learning Materials Here : & m @&\ www.studentbro.in



Given differential equation is
log (gx) = 3x + 4y

X
_— ﬂ$63x+4y
dx
[clogm=n= e" =m]
= @=e3" ety (1)
dx

On separating the variables, we get
1 R
*97 dy = e "dx
On integrating both sides, we get
I e Hdy = _[ edx

e—4 y e3x

- — +C L)@
-4 3 )
Also, given thaty =0, when x =0.

On puttingy =0 and x =0 in Eq. (i), we get

-4(0)  ,3(0)
= Y
—4
1_1 0_ .0
= —-—— ==+ C [ e =g = 1]
4 3
1T 1
= P
4 3
-7
C=— (1
12
On substituting the value of C in Eq. (i), we
get
e—4}.’ N e3X B 7
—4 3 12
which is the required particular solution of
given differential equation. (1
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12. Solve the differential equation

(1+x%) gl +y= etan X All India 2014
X
Given differential equation is
(1+ x*) dy | y =gl X
dx
On dividing both sides by (1+ x?), we get
d}/ 1 elan_' X

+ y
dx  (1+x) 1+ x?
It is a linear differential equation of the form

dy
bl A8 -
dx+yQ

On comparing, we get

P = andQ:e

e i

1
[ I ~dx = tan™ x] (1
1+ x
Then, required solution is

(y-lF):j (Q-IF)dx+C

tan x '1

tan x_J' dx +C
1+x
i1 e2tan lx
= ye™ "=J' —dx+C
T+ x
= ye™ X—j4(C i) @)
- e2tan*1x
where, !=j -— dx
1+ x
Put tan~ x—t=>w~l~-5dx dt
T+ x
I=J eldt
=P _2tan"'x
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= == = 1="—
2 2

On putting the value of I in Eq. (i), we get

2 'tan_1 X

yetan X:e 2 +C

which is the required general solution of
given differential equation. §))

(1)

13. Find a particular solution of the differential
equation -gz + 2y tanx =sinx, given that
X

y =0, when x = g Foreign 2014

Given differential equation is
& + 2y tanx = sinx
dx
which is a linear differential equation of the
form @ + Py =Q.
dx
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On comparing, we get
P =2 tanxand Q = sinx
[ eZJtarax dx _ 6'2 log| sec x| %)

logsec? x
= 8

[-mlogn=logn™]
= sec? x [ e'98* = ]
The general solution is given by

v-|F=jQ xIFdx+C  ..() (1

s yseczxzj(sinx-seczx)dx+C
) ; 1
= y sec x='|'smx-——42mdx+C
- COs” X
- ysec2x=Itanxsecxdx+C
= y sec” x = sec x + C (i)

Also, given thaty — 0, when x = J—; On putting
y=0and x = % in Eq. (ii), we get

Oxsec X —sect4C
3 3

= 0=2+C =C=-2 (1)

On putting the value of C in Eq. (ii), we get

y sec’ X = sec X — 2

= y = cosX — 2 cos® X

which is the required solution of the given
differential equation. (1)

14. Solve the following differential equation

X COS [KJ u y cos(f-] +x x%=0.
X ) dx X All India 2014C
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Given difterential equation is

: (:05(-}'{-)ﬂ =y cos(x) + X (1)
x J dx X
which is a homogeneous differential equation.
; dy vV,
On puttingy=vx = —=v+Xx—1In
dx dx
Eq. (i), we get
dv
X cosv|v+x—|=vxcosv+x
G
" v+xdv:x(vcosv+1) )
dx X COSV '
dv  vcosv+1
==, K — -V
dx COSV
dv vcosv+1—vcosv
== ! Qo
dx COSV
—% xdv: 1 .—.:uz:osw.fd\ffzg—}i (1)
dx cosv X
On integrating both sides, we get
dx
j cosvdv=|—
X
= sinv=logx+C (1)
= sin{z)=logx+C{':y=vx:>v:}ijl
X X

which is the required solution of given
differential equation. (1)

15. If y(x)is a solution of the differential equation

2_"_'_§j_*]£ d_y = —cosx and y(0) = 1, then find
1+y Jdx

the value of y (g) Delhi 2014C

Get More Learning Materials Here : & m @&\ www.studentbro.in



Given differential equation is
(2 + sinx | dy

__)_

= — COS X
1+y ) dx
o 1 -y cos-x e (1)
1+y 2 +sinx
Now, on integrating both sides, we get
I _ J_C_Q?"_d
1+y 2+ sinx
= log[l+y|=-log|2 + sinx| +logC
[ oosx “
for\] L dx let 2 + sinx=t
2 + sinx
= cosxdx =dt,
Cos X
then dx=| —=logt+C
-[2 + sinx -[ 2
i =Iog|2 +sinx + C |
= log(1+vy) +log(2 + sinx) =logC
= log(1+y) (2 +sinx) =logC
— 1+y) (2 + sinx) = (i)
Also, given that at x =0, y(0) =
On putting x =0 and y = 1in Eq. (i), we get
1+ 2 +sin0)=C
= C=4 (1)
On putting C = 4 in Eq. (i), we get
(1+y) 2 +sinx)=4
=> T+y=-
¥ 2 + sinx
= = : il
" 2 +sinx
4 -2 —sinx
ﬁ - .
2+ sinx
i =2—5!nx 1)
2 +sinx
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16. Solve the differential equation

dy . . (:-1:)_
X +y=x-cosx+sinx, giveny|—|=1
dx 2
All india 2014C
Given differential equation is
dy .
X-——+Yy=XCOSX+ sinx
dx
d Sin X
= Y ST L
gx % - X

[dividing on both sides by x]
which is a linear differential equation.

On comparing with the form ZX +Py=0Q,

X
we get P:l andQ=cosx+ﬂ
X X
i o -
F=elfP =@ x =elogr =y
The general solution is given by
y-IF= | Q xIFdx+C (1)
= yX = .x(cosx+w)dx+C
’ % |
= yX = [ (x cosx + sinx) dx + C
= Xy = [ x cosxdx+ [ sinxdx+C

Il

= xy:xj.cosxdxuj.[%(x)Icosxdx]dx

+J5inxdx+C
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= Xy =Xxsinx+ cosx —cosx+ C
= xy=xsinx+C
=

3y'-—-sin><+C-l L) (D
X

Also, given that at x = g; Iy
On putting x = g and y =1in Eq. (i), we get

1=1+Cogu::-C--O (1)
oo

On putting the value of C in Eq. (i), we get

y = sinx |
which is the required solution of given
differential equation. (1)

17. Solve the differential equation

i—y + y cotx = 2 cosx, given that y =0, when
X
g g Foreign 2014
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Given differential equation is

q}i +y cotx =2 cosx

dx
which is a linear differential equation of the
form

dy

— +Py=Q

dx d

Here, P = cotx and Q = 2 cosx
(F EJI Pdx __ ejcol X dx elogsinx

= IF=sinx (1)
The general solution is given by

Y xIF= [IFxQdx+C
= ysinxz..Z sinx cosx dx + C
= ysinx=:5in2xdx+(j
= ysinx:—i‘?—;ﬂJrc i) ()
Also, given thaty =0, when x = g

On putting x = g— andy =0 in Eq. (i), we get

C=-— (1)

On putting the value of C in Eq. (i), we get

: 28
VSIiNX ==~ COS — — —

= 2ysinx+ cos2x+1=0
which is the required solution. (1)
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18. Solve the differential equation
(x* =y dy + (y? + x’y9) dx =0, given that
y=1 whenx=1 Foreign2014

Direction (Q. Nos. 19-22) Solve the following
differential equations. -

Given differential equation is
(x? —yx3)dy + (y? + xy) dx =0
On dividing both sides by dx, we get

(x2 —-yxz) gz+(y2 +x2y2) . {)
dx
= x2(1~y)gz+y2(1+x2)=0
dx
ety —x2(1—y)d—y=y2(1+xz)
dx
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= ———dy——-—ﬁ— dx 4)]

On integrating both sides, we get
2
y—1 ol J1+ X~ dx

2

y* X
12y 1
2 dy—- | —=dy=|—=dx+|1-dx (1)
=>2jy2y Iyzy_.[xz J
On putting y* =t = 2y dy = dt in first integral,
we get
L L S S
2= L "'y X
=% l}og|y2|+1=——+x+c (i)
2 X

Also, given thaty =1 when x=1
On putting y = 1and x = 1in Eq.(i), we get

1 1 -1
Doglit—=—+1+C
2 gl 1 1

- %Iog|1|_+1:-—1+1+C

= C=1 [~ log1=0] (1)
On putting the value of C in Eq. (i), we get

log | |+1 D x+1
_0 e
Y loslyi I+ o=—1

which is the required solution. (1)

19. Ex +y sec x = tanx All India 2012C; Delhi 2008C
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Given differential equation is
d :
—y+y5ecx:tanx ...(1)
dx

which is a linear differential equation of firSt_
order and is of the form

gx+P}/=Q (i)
dx
On comparing Egs. (i) and (ii), we get
P = secx and Q = tan x (1)

| ejsecxdx - el0g| sec x + tan x|

P j secx dx = log| sec x + tanx|]

= IF = sec x + tan x (1)
The general solution is
yxIF=[Q-IFdx+C

y (sec x + tanx) = jtanx-(secx+ tan x) dx

=y (sec x + tanx) = j secx tanxdx + I tan’xdx
=y (secx + tanx) = secx + _[(seczx—h dx (1)

= y(secx+tanx)=(secx +tanx) - x+C
[ J sec’x dx = tan x + C]

Oh dividing both sides by (sec x + tanx), we

get the required solution as

X C
y=1- + (1)
sec X+ tanx secx + tan x

2dy 2
20. 2x = e 2xy +y“ =0 Delhi 2012
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Given differential equation is
2x2@~—2xy+y2 =0
dx
dy _2xy-y’
dx  2x°
which is a homogeneous differential equation.

_

L) (1)

On puttingy =vx = %:v-&x@ in Eqg. (i),

X dx
we get
T 5
v+xd_3=2vx 2vx A
dx 2x
dv  2v—v?
= V+X— =
dx 2
dv  2v-v?
=% X— = —v
dx 2
dv 2v—-v?-2v
=5 X— =
dx 2
dv  —v*
= X—=—
dx 2
=% 2—£i1:—ldx (1)
v X
On integrating both sides, we get
2dv —dx
—e +C
==
= 2[v7dv=—log|x|+C
=
= =¥ =—log|x|+C
-2
= —=—log|x|+C
%
= :2—x=—log|x|+C
[‘.'y*vx:bv=z]
X
=% - 2x = y(-log| x| + C)
—2X
= Y=
—log|x|+C

which is the required solution.

(1)
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21. E—E =1+x°+y’ +x’y?, given thaty =1,

when x = 0. Delhi 2012

~ Given differential equation is
dy

—d=1+><2+y'2+x2y2 (&)
dx
— gx:{1+x2)+y2(1+x2)
X
= gf-:(1+x2)(1+y2)
dx
. A L ™
T+y

On integrating both sides, we get

d
ji+—);2=j(1+x2)dx

= tan“y:x+?+C (1)

Also, given thaty =0, when x = 2.
On putting x =0 and y =1in Eq. (i), we get

tan '1=C
=5 tan '(tant/4)= C [ tan% = 1]
= . C=mn/4 (1)

On putting the value of C in Eq. (i), we get

-1 T
tan y=x+—+—

| 3 4
X n
= y=tan{x+ —+ —
3 4
which is the required solution. (1)

22. i l)d—y =1 y=0 whenx=2
dx All India 2012
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Given differential equation is

dy _
-1
X0 =1 dx
- dy _ 1
dx  x(x*-1)
i dy _ 1
dx x(x=-1x+1)
[ a? - b? =(a-b)a+b)]
dx
—_—

T X =D (x+1)
On integrating both sides, we get

IY Ix(x 1)x+1]

= y=i+C ()

where, !=J ¥ (1)
x(x=1x+1)

Let 1 =é+ 2 + 2

xx=-1Dkx+1 x x-1 x+1
= 1=AKX-NX+D+Bx(x+1)+Cx(x-=1)
On comparing coefficients of x* x and
constant terms from both sides, we get

A+B+C=0 ...(1)
B-C=0 ...(ii1)
and -A=1
= A=-1
On putting A = —1in Eq. (ii), we get
B+C=1 ...(iv)

Now, on adding Egs. (iii) and (iv), we get

2B=1 = B=l
2

On putting B = -;- in Eq. (iii), we get

l-C=O =3 C=— "
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A=—1,B=landc=l,
2 2

then 1 =:—1+ V2 + V2 (1)

x(x-Dx+1 x x-1 x+1

On integrating both sides w.r.t. x, we get

1 -1
l= dx ={—d
Ix(x—1)(x+1) X Jx X
1 ¢ dx 1 dx

27 x-1 27 x+1

= l:—iog|x|+%Iog|x-—l|+%log\x+1|

On putting the value of I in Eq. (i}, we get
y=-|og|x1+%long-1|+~2‘-|og|x+1|+c
v N

Also, given thaty =0, when x = 2.
On puttingy =0 and x =2 in Eq. (v), we get

:
0:—|og2+%log1+5|0g3+C

1 1
C=log2-—log1-—log3
= 08 5 8 208
= C=log2 - Iog«.@ [ log1=0]
=> C-Iong— (1)
V3

On putting the value of C in Eq. (v), we get
y=—|og|x|+%|og|x—1|

1 2
+—log|x+ 1| +log— (1)
5 g L+ =

which is the required solution.
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23. Solve the following differential equation

dy .
o + ycotx = 4x cosec x, given that y =0,
T
when x = 5 Deihi 2012C; Foreign 2011
Given differential equation is
9{—y+ycotx:4x cosec x
dx

which is a linear differential equation.
On comparing with general form of linear
differential equation of 1st order

EfX+F’y=Q , we get
dx
P=cotxandQ = 4x cosecx (1)
IE = edex _ eJ’cot X dx
— e!ogsinx = sin X [ eiogx - X]
— IF = sin x (1)
Now, solution of linear differential equation
is given by

yxIF=[(@QxIPdx+C

On putting IF = sin x ar_1d Q = 4x cosec X, we
. get _
y X sinx = | 4x cosec x - sinxdx + C

. . 1 :
=  ysinx=|4x-——--sinxdx+C
. sin X

= ysinx=-4xdx+C
= ysinx=2x"+C ROKe))

Also, given thaty =0, when x = g-

On puttingy =0 and x = g in Eq. (i), we get

2 ol
0=2xX +C = C="2
B 2

-
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2

On putting C = — "7 in Eq. (i), we get

TEz

y sin X = 2x* - ——
2
=5 y= 2x*cosec x — T cosecx (1)

which is the required solution.

24. Solve the following differential equation
(1+ x?) dy + 2xy dx = cotx dx, where x # 0.

All India 2012C, 2011

Given differential equation is
(1+ x?) dy + 2xy dx = cot x dx [Fox#0]
= (1+ x%) dy = (cot x — 2xy) dx

On dividing both sides by 1+ x*, we get

tx—2
dy:co X 2xydx

1+ X

2 t
_ dy+ Xy _ cotx

dx  1+x% 1+ x°

A1) (D)

which is a linear differential equation of 1st
order and is of the form

Elfz+F’y=Q 11
dx
On comparing Egs. (i) and (ii), we get
p- 2x ard = cot>;
1+ x° 1+ X
2%
=2 _d
Fogio?
ik el0g|1+x2| o Y X2 (1)
forJ‘ 2X2 dx, put1+ x* =t = 2xdx =dt
1+ X

Get More Learning Materials Here : & m @&\ www.studentbro.in



l gE:Iog|t|:log|1+x2|+C J
t

Now, solution of linear differential equation is
given by

yxIF= [ (@Q x1F)dx + C
y{1+x2)= ; CO“; x(1+x3) dx+C
“14+ X
e y(1+x2)= cot xdx+ C (1)

= y{+x)=log|sinx|+C
['.'Icotxdx=log|sin x|+ C]

On dividing both sides by 1+ x*, we get

_ log|sin x| i C

RS 14 x*
which is the required solution. (B

25. Find the particular solution of the
differential equation

(1+e*)dy+ (1+y?)e*dx =0, given thaty = 1,
when x = 0. Foreign 2011; All India 2008C

Given differential equation is
1+ e®) dy + (1+y%e'dx=0
Above equation may be written as
X
dy . = - 2x dx (1)
T+y 1+ e
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On integrating both sides we get

=l

1+y o g™
On putting e* =t = e"dx = dt in RHS, we get
tan"'y = = dt
_ y J1+t
— ~an'y=—tan 't +C
= tan”'y = —tan (e’ + C ...(0)

[t =e](1%)
Now, given thaty =1, when x =0.
On putting above values in Eq. (i), we get
tan"'1=— tan (%) + C

= tan" [tan E) =—tan "1+ C [e el =1

e L - tan™" (tan EJ +C
4 4
— LEPELEY
4 4
= C:E+E = C=E
4 4

= y=tan T _tan'(e" | = cot[tan”\(e")]

_ C AL J YR —)
= cot|cot | — Jfan "X=cot "~
e” X

b

which is the required solution. (1%)
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26. Solve the following differential equation

dy 1 .

(1+ x2) — 4+ 2xy = — ,giventhaty =0

o y 1 5 5 g y=y
when x = 1. Foreign 2011

Given differential equation is

1
(1+x2)$+2xy=
dx 1+ x

2

On dividing both sides by (1+ x), we get
dy  2xy 1 .
+ = w1}
dx 1+x* (1+xH)°
which is a linear differential equation of the
form

OF . st ...
dx
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On comparing Eqs. (i) and (ii), we get

2X 1
Pr= and Q = (1)
1+ x% (1+ xH)*
2x
= 9
IF—EIHXZ ' elog|1+x2| (1)
=  IF=1+x* [ e!°8% = x]
2x2dx,put1+x2+t=1>2xdx=dt
T4+ X
| g}zlog{t|=log|1+x2\

Now, solution of linear equation is given by

Ty xIF=[@QxIF)dx+C .. (iii)
1 2
1+ x9) = x (14 x7) dx + C
y( 5 .[('l+x2}2
1
-
— y(1+x)—j1+x2dX+C
= y(1+x2}=tan‘1x+C (iv) (1)

j 1 2d:»(ztan_U:—fC}
1+ x

Also, given thaty =0, when x =1
On puttingy =0 and x =1in Eq. (iv), we get

O=tan "1+ C
i
=% 0=tan" (tan E)ﬁ—C ['.'1= tan]
4 4
-7
= 0=24+c = c===
4 4

On putting C = ? in Eqg. (iv), we get

y(1+:ﬂ(2)»——tarf"’x——]'E
4
_tan'x  m
C1+x 40+ XY
which is the required solution.

(1)

—
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2. Solve the following differential equation

At B
Xay = yax=+/x"+ y-dx All India 2011
Given differential equation is

xdy —ydx = {x* +y*dx

= (y++x* +y2)dx=xdy
dy:y+~,!x2+y2 i) (1)

= e

dx X

which is a homogeneous differential equation
because each term have same degree.

On putting y=vx = ﬁ=v+x.ﬁ (1)

dx dx
in Eq. (i), we get

dv  vx+ /x5 VXS v+ Xy T+ v
V4 X— = =
X X

dx

= v+x?=v+1{1+v2

X

= x—?jﬁ=1/1+v2 — dv :dx
X

J1+v2 X

On integrating both sides, we get
_[ dv _[ dx
1+ V2 X
= log|v++1+v?|=log|x|+C

l‘-."‘ﬁ\/:ﬁ: log | x + /x* + a’|

andj$=|og|x|+c] t))
X

5 [’.'y=vxw
= Iog‘x+1/1+z-,;1zlog|x|+(: vV
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fo2 b2
= lo'gy+ sl i !—Iog|x|:C
o
y+yxt+y?
X
== log =C
X

o

m
[ log m — log n=log (v)
n

y + /%% +y? o . [ if logy = x, |

x* theny = e*

- y+x2+y?=x%. et

LY+ X2 +y? = AX? [where, A = e (1)

which is the required solution.

=

28. Solve the following differential equation

(y + 3x%) ? =X All India 2011
¥

Given differential equation is

(y+3x2}lﬂ#x =5 ﬁ=Z+3:u:

dy dx X
= dy ¥ _3x () (1)
dx x '
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which is a linear differential equation of the

form
ﬂ*"P)’:Q ...(ii)
dx
On comparing Egs. (i} and (ii), we get
P=:JandQ=3x (1)
X
IF = I—;dx = i logix| _ eln:)g:vc"1 =y~
= Fond o
X
Now, solution of linear differential equation is
given by
yx IF=[(@QxIRdx+C
yxlzjaxxldx (1)
X X
— ] Z=J30’:a( = L=3x+C
X X
=5 y = 3x% + Cx
which is the required solution. (1)

29. Solve the following differential equation
xdy =y +2x*) dx =0 All India 2011
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Given differential equation is
xdy — (y +2x}) dx =0

2
- dy _ Y +2x
dx X
= Y g (i) (1)
dx X
which is a linear differential equation of the
form
@+Py=Q ...(ii)
dx
On comparing Eqgs. (i) and (ii), we get
P:jandQ=2x (1)
X
1
—— dx
Foel o eai oyl )
X

Now, solution of linear differential equation is
given by

yxIF=[(QxIPdx+C

LA '(2x><l)dx+C

X X
== X='2dx+C=> Yo 0% C
X X
= y =2x% + Cx
which is the required solution. (1)

30. Solve the following differential equation
xdy +(y - x’)dx=0. - All India 2011
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Given differential equation is
xdy+(y—-x)dx=0

dy X -y
_ =
dx X
dy _ 2 ¥
— - L=x"=1
ax X
= dy LYoy L) ()
dx X
which is a linear differential equation of the
form
i}iJrPV:Q (i)
dx -
On comparing Egs. (i) and (ii}, we get
leandQ=x2 (1)
X
1dx |
IF=¢* =e8M=x (1
Solution of linear differential equation is given
by _
yxIF=] QxIF)dx+C
i [ x? x xdx+C
= yx = [ Xdx + C
5 X C
X
=—+(C>= y=—+—
- ™ 4 Y 4 X
which is the required solution. (1

31. Solve the following differential equation
e’ tany dx + (1 - e%) seczy dy =0. Delhi2011
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Given differential equation is
e*tany dx + (1— €% sec’ydy =0

X 2
e secC
dx = Y

e’ —1 tany

=% dy (1)

On integrating both sides, we get

e ¢ sec’y
Iex_1dx_.[ tanydy

On putting e* —1=tand tany = z

— e*dx =dt and sec’y dy = dz

J'md_t.z dz 1)
t Z

1
= Iogltl=|og|z|+IogC_['.°j;dx:I0g|x|]
= log|e* ~1=log|tany|+log C
= log|e* -1 =log|C - tany|

[- log m+log n=log mn]

= eX-1=C tany (1)
tan B o e £

= TR Y r

which is the required solution. (1

32. Solve the following differential equation

(1+ y?) (1 + logx) dx + xdy = 0. Delhi 2011
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Given differential equation is
(1+y*) (1+logx) dx+xdy=0

= 1+10gxd}<: -_dyz (1)
X 1+y
On integrating both sides, we get
j1+logxdx=__ . dy2
X * 14y
_ - d
= [lokr [OBEg=- [ anm)
X X "T+y

(log x)?

= log|x|+ +C=—tan'y

_ 1 "
forj log x dx = putlogx=t = —dx =dt
X X
2 | 2
.'.Itdt=-t—+C=(ogx) +C
i 2 2 _
I 2
= tan_1y=—{|og|x|+{0ix) +C]
log x)°
— y:tan[—-log]ﬂ—(oi) —C]
which is the required solution. (1%)
33. Solve the following differential equation
[Xsinz({—] - y} dx + xdy = 0. Delhi 2011C
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Given differential equation is

[x sinz(z] - y] dx +xdy=0
X

which is a homogeneous differential equation.
This equation can be written as

[x sinz(—z) - y] dx = —xdy
X

iy y — X sinz(};)

=5 = A1)
dx X
On putting vy =wx = ﬂ=v+xg\—/ in
dx dx
Eq. (i), we get (1
. 2| VX
vX — Xsin“| —
dv ( ¥ ] .2
V4 X—= =v—sin“V
dx X
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(1

= COSECZVj|

(1)

dv o
g X— =—sin"v
dx
dv dx
= g wm T
$in‘ v X
On integrating both sides, we get
_[ dv. _ pdx
sinfv 7 X
= J-cosecgv dv = — qi{ _12
X[ sin“v
= —cotv=—logx+C
[ j cosec’v dv = — cot v + C] (1)
= - cot[£]=—|ogx+C['.'y=vx.'.v
X
= cot(x)zlagx-—(f
X
y _ -1
— ~ = cot (logx - C)
X
= y=x-cot '(log x = C)

which is the required solution.

34. Solve the following differential equation

L

ax
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+y— X4 weatx=0,x=0

Delhi 2011C
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Given differential equation is

xﬁ+y—x+><ycotx:0,xi{)
dx
Above equation can be written as
xd—y+y(1+ Xcoty) =X
dx

On dividing both sides by x, we get
dy (1 + x cot x)
S dy =1

clx X
= -d—y+y(l+cotx)=1 (1) (1)
dx X
which is a linear differential equation of the
form
-@H’VZQ (i)
dx

On comparing Eqs. (i) and (ii), we get

P:-1—+cotxandQ:1
X

"a
—+cotx|d
IF = eIde _ E‘J [x =% XJ x: e!og|x[+ log sin x

[ Il dx =log|x and J cotx dx = log]| sin x|]
X

Get More Learning Materials Here : & m @&\ www.studentbro.in



log|x sin x|

=e
[ log m + log n =log mn]
= IF = x sin x (1/2)
yxIF= [(@QxIF)dx+C (1/2)

yxxsinx:f1xxsinxdx+C

ey )/XSIHX—--[XSInXdX +C

— yxsinx:xjsinxdx

—j((%(x)-_l-sinxdx)dx+c

[using integration by parts injx sin x dx]
:>yx5inx=—xcosx—j1(— cos x) dx + C (1)
= 'yxsinx:—xcosx+_[cosxdx+(3

= yxsinx=—-xcosx+sinx+C
On dividing both sides by x sin x, we get
—xcosx+sinx+C

Y= :
X sin x
1 C
= Y= =G X — o —
X  Xsinx
which is the required solution. (1)

35. Show that the following differential equation
Is homogeneous and then solve it.

ydx+x|og( ]dy 2xdy =0
HOTS; All India 2011C
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. ? Let the value of-ji be f(x, y). Now, put x = Ax
! 3

and y=Ay and  verify  whether
f(Ax,Ay) = A"f(x, y)ne Z. If above equation is |
satisfied, then given equation is said to be
homogeneous equation. Then, we use the
substitution y =vx to solve the equation. |

Given differential equation is
f
y dx + x log ]dy 2xdy =0

= ydx= x—xlog(]]

= Gy ) (1/2)

o 2x—x|og()

Now, let f(x, y) =
2x—x|og( )

On replace x by Ax and y by Ay both sides, we

get
f(hx, Ay) = L -
2AX — AX Iog[ y)
AX
[2)( - xlog (y]]
X
=  f(Ax, Ay) = = A%, y)
2x - xlog [y)
X
So, given differential equation is
homogeneous. (1/2)
dv dv
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On putting y =vx =

in Eqg. (i), we get

dx

——=V+X—

Get More Learning Materials Here : &

dv vV
A T Y 2-logv
2x—x|0g{vx] 5
X
dv v v—-2v+viogv
= X—= -~ —y=
dx 2-logv 2 -logv
dv  —v+vlogv
= X-—=
dx 2 —logv
- 2 -logv dv:gj_x 1
viogv —v %
On integrating both sides, we get
I__%:_‘O_g_"_ _ [
vilogv —1) X
On putting logv=t = —ldv:dt
v
Then, g;idtzlog|x|+(f
t_
1
= I[—1)dt=l0g|x|+(ﬁ (1)
t—1 i .
A £ D
1-t
— +
A
and use‘[ (R + Q) dt
- D =
= log|t -1 -t =log]|x|+C

= log|logv—-1]-logv=log|x|+C
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‘Mgv—1

= iogi ‘=Iogix|+(:
=
n
= log !log : 4} ~log|x|=C
v
IR L Vi (O
v
log ? —1 g
log (-—*—=C [ PN Y 4-}
4 _ X
which is the required solution. (1)

36. Solve the following differential equation

(xcos—y- + ysinz]y— (ysinx — X COS X)x 214 ={),
X X X X ) dx

All India 2010C

Get More Learning Materials Here : & @ @&\ www.studentbro.in



? Firstly, convert the given differential equation
. * inhomogeneous and then put y =vx.
d v
— -‘-}-{ =i+ X d—
dx dX

Further, separate the variables and integrate it.

Given differential equation is

(xcos}i+ysiny)-y
X X

-—(ysinz—xcosx)-x?—‘z:

X X X

which is a homogeneous differential equation.
It can be written as

(xcosz+ysin1]-y

X X
= ysin-}-i—x cosz)x@
\ X X dx
X COS (y) +y sin (y)jl Y
dy X X .
= s e S NEE, — ()
X [ysinyvxcos} < X
X X
On putting y = VX
=k Ejﬁzv+><(‘?-’-‘-f- in Eq. (), we get (1)
dx dx

dv  (xcosv + vxsinv) - vx
Vb X— = ———

dx (vxsinv— x cosv) - x

dv  vcosv + v sinv
= V+X—=—

dx VSINV — COS V

dv  vcosv+vesiny
= X — =

_ -V
dx VSinv — CoS vV

xdv _veosv +vZsiny — v sinv+ v cosv
dx vsinv — cosv
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(1)

dv 2V COSV
= X— = —
dx vsinv— cosv
VSinv — cosv dx
dv=2—
V COSV X

On integrating both sides, we get

vVsinv — cosv dx
j dv:ZJ.—
V COSV X

- j(vsinv_ cosv]dv=2jd_;

vVCosy VCOSsvV

- J(tanv-3)dv=2 [ &

= log|secv|—log|v|=2log|x|+C (1)
['.*Itanvdv=|0g| sec V| andfldx=log|x|}
X

= log|secv|—log|v|—-2log|x|=C
= log|secv|—[log|v|+log|x|*=C

[ logm" = nlogm]
= log|secv| - Iog[vx2|=C

[ log m + log n = log mn]

secv
= | 7= C
VX
mn
> logm - log n=log (—~
n -
sec}f- e VX
= log 2=t y
y 2 V==
L x x
X i
sec
= log &=
Xy
which i< the reciiired caliition (1)
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37. Solve the following differential equation

xy log ( ]dx + {yz - x*log (yH dy =0.
| g Delhi 2010C

Given differential equation is

oo (2] - ()] -0

which is a homogeneous differential
equation. This equation can be written as

xylog[ )dx-[x logm yz] dy
& xy log (’;)

N dx (i)
A XZ Iog (Y) - y2
X
Now, put y=vx = ig=v+x@ 1)
dx dx
in Eq. (i), we get
2 VX
vx~ log| —
dV ( X ] v |Og Vv
VX = : 2
dx x? Iog (VX) v Iog V—V
X

dv viogv
=y X— = —v

dx logv-—v?

dv vlogv—vlogv+v v
— ¥ -
dx log v — logv—v
log v — v? dx
dv=— (1)
Vv X
On integrating both 5ides we get
_[ log v — v? i = dx
Vv X
rlogv . e 1 r clx
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= J"V“;'dv—J;dv=Jf |
= J-vl*g" logvdv —log|v|=log]|x|+ C
I

Using integration by parts, we get
log v J vidy — _[ [% (logv) - j v_3dv] dv

=log|v|+log|x|+C
v ] ¥
:>—I0gv—J——idv=log|v|+log|x| +C

=> —1|0gv+ j “dv=log|v| +log|x|+C

2v?
= —1!ogv 4, i—log|v|+log|x|+C
2v* 2 1=2)
n+1
['.'Ix”dx:x +C]
n+1
-1 1
= mlogv—— logjvx|+C (1)
v 4v?

[ log m + log n = log mn]
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l:'.'y=vx:.>v:—}:]
X

2 2
—X y X
= —log|~|-—=lo +C
2y g(x) 3 gly|
o log(y)
=5 = LW =log|y|+ C
y2 2 4
L ]
2 /
=% %[Zlog X)+1]+Iog|y|=—C
4y \ X
2 y) 2 2
=x"{2log| = [+ 1]+ 4y°log|y|= 4y’k

X)

[where, k=-C] (1)
which is the required solution.

38. Solve the following differential equation

(x?+1) ‘;i +2xy = x* + 4. Allindia 2010, 2008
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Given differential equation is
(x* +1)g}—,+2xy= VX% + 4
X

On dividing both sides by (x* + 1), we get

dy+ 2xy X+ 4 N

dx x?+1  x2+1

which is a linear differential equation of the

form Q-+-Py=Q i)

dx
On comparing Eqgs. (i) and (ii), we get

|2
p_ 2x —r e X“+ 4

X +1 4

X
IF S X2+1 - elOg]){z"" 1]

=  IF=x%+1 [ e'°8% = x] (1)

2

[I £x dx=putx’+1=t = 2xdx=dt
X +1

.'._I‘%r:I|t3~g|t|=|cvg|x2 +1|]

Now, solution of this equation is given by
yxlF=j(QxIF)dx+C (1)

.2
yix* + 1) = [ +1)- 32 i @)

x2+1
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=% yo* +1) = j11x2 + 4 dx
=y +N) =[x+ @ dx

Now, we know that
I x? + a’ dx=§m
+a;loglx+m|+c
'. y(x2+1}=25m
+§-Iog]x+ﬁ|+(ﬁ
::'y(x2 +1)=§m
4 Tlogl xR+ A+ €

which is the required solution. (1
39. Solve the following differential equation

(x3+x2+x+1)g—y-=2x2+x

dx HOTS:; All India 2010
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'""” Flrstly, dlwde gwen equatlon by 4+ %%+ x+ 1

Y
- * then it becomes a variable separable type
dlfferentlal ‘equation and then solve it. |

Given differential equation is
(X + x +x+l)gz=2x2+x
dx
dy  2x*+x
dx X +x*+x+1

—

It 1s a variable separable type differential
equation.

2x% + x
y = dx
Xk x? 4 x41

On integrating both sides, we get

- 2x% + x
dy = dx
j XX X+
) 2
" g : 2X° + X e
X“X+D+1(x+1)
) 2
N 2% +2x dx
TX+T) (X +17)
y=1 (D)D)

2
where, !=_[ £X +2x dx
X+ x“+1

Using partial fractions, we get
2x% + x A Bx +L

(x+1)(x2+1)_x+1 x2 41 il

2x2 4+ x AP +D+Bx+O) (x+1)

= 2 i 2

(x+1D X +1) x+NKx"+1
= 22 +x = A2 +1) + Bx+C) (x + 1)
Now, comparing coefficients of x* x and

RIENE RNty T SRS, ANURIIIES N | SR . [ S
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CONSAant erim 1o Yol >iued, we gel

A+B=2 sk 111)

B+C=1 ...(1v)
and A+C=0 (V)
On subtracting Eq. (iv) from Eq. (iii), we get

A-C=1 ... (vi)

On adding Egs. (v) and (vi), we get
2ZA=1 = A= -1—
2
On putting A =% in Eq. (iii), we get
1 1. 3

—4B=2 = B=2-—=
2 2 2

On putting B = % in Eq. (iv), we get

i+Cz1 =3 C=1——§—

2
= C= -1 (1)
5,
On substituting the values of A, Band C in
Eqg. (ii), we get
3 1
2 +x 12 N 2575

X+ 2+ x+1  x*+1
On integrating both sides, we get

’__[ 2x% + x sl 1 dx
(x+1) (x> +1) 29 x+1
3 X 1 dx
+ = dx — —
ij2+1 ZIx2+1

1 3
o i = oven | e dp ] e = g 5e® £
5 g|x+1]| i g | |

—%tan_1 w1+ 1)

j 2x dx—_—>putx2+1=t=> 2x dx = dt
x“+1
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:xdx\-— then | —~

dt 1
—|—==lo =—Io 44T
et 8| \

=x~.h+1

On putting above value of I in Eq. (i), we get
y=liog|x+1| +§Iug|x2 +1|
2 4
= tan”' x + C
2
which is the required solution. (1)

40. Solve the followmg differential equation

-\f1+X +yf+xty +xy3}£“0. All India 2010
X

Given differential equation is

\/1+><2+y2~1r:)<2y2 +xy-qx=0
dx

=5 \/(1+x2)+y2(1+x2)=—xyj—z
dy

1+x) (1+y) = - xy—

= Ja+x) 0 +y?) xydx
— \/1+x \/H—y :—xyd—

14y =

On integrating both sides, we get

A \H+x2.
Im Y .[ x2

On putting 1+y? =tand 1+ x* =u’

= P g N gy 1)

X dx

=% 2ydy =dtand 2xdx =2udu

=5 ydy—g—andxdx u du (1)
lj I udu

g o f g = u’
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29 T ut -1
L cw?-1+1)

= — du (1)
212 $ o=
2
ru =1 1
== tV2 = du — du
Y u? -1 Iu2—1
- 1
= 1+ 2 = e Ly o |oe———dp
Fo1+y? =t
1 u-—1 |
J1+y?=—u—-=log—+C
. ¥ 2 gu+1_
[J- zdx = 1 Iogx_a+C}
x“—a°“ 2a |x+a

= 1+ y? :—WZHXL%M%M%:TS :gﬂi

which is the required solution. (1)

41. Find the particular solution of the di‘ferential
equation satisfying the given condition

x%dy + (xy + y?) dx = 0, when y(1) = 1.
Delhi 2010
Given differential equation is
x2dy + (xy +yH) dx =0
Since, degree of each term is same, so the

above equation is a homogeneous equation.
This equation can be written as

x2dy = — (xy + y?) dx

dy _ —(Xy+ YZ) (I)
= dx x?
On puttingy = vx p
dy %
= dx Era dx
in Eq (i), we get . s
v+xiv= ol -;v ) )=—(v+v2)
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=5 X—==V—V" =V
dx
dV 2
— X—==—V ' =2v
dx
. dv_ —dx 1)
vZ +2v X
On integrating botg sides, we dget
v X
Iv2+2v_ X
- j dv __-%
vie2v+1-1 7 x
o J~ dv _-g)_c
(v+1) () R
|v+1 1|
—loglx|+C
= 2 g| +1+1| Bl
j dx - 1 Ioglx_al-l-C}
x2—a%* 2a X+ a
" og Y|
= —lo =-—log|x|+C
2.31\/ 2l g | x|
1 4 e
= —logi—=% —log|x|+C | v
2 Y+2 .V—-—‘)—(
X
1 y | i
= —lo =—log|x|+C (i1)
2 gy+2><:| X

Also, given thaty =0 atx=1y=1
On putting x =y =1in Eq. (ii), we get

L__l_
11+ 2

iog
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v 1l

%=—I0g1+C

1 1
C=—log— [+log1=0] (1)
& 2 g?5 .

On putting the value of C in Eq. (ii), we get

%loglyfle = —log| x|+ %Iog%
= Iog%yr2x{=—2log|x1+log%
= log ” +ny =logx™ + 1og%
[-nlogm=logm"]
=4 Iogy:/zx:log;—zﬂog;—

y 1
lo = log —
~ g(V”X) ® 3¢

1

y
= y + 2X
=> y - 3x°
= y(1 — 3x7)

y

- 3x2

=y +2X

=—2X

"y 2Xx
3u* —1

[ log m + log n = log mn]

which is the required particular solution. (1)

42. Find the particular solution of the differential
equation satisfying the given condition

dy
dx
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Given differential equation is

dy
~? =—ytanx
dx 4
: dy
It can be written as —~ = tan x dx (1)
¥

On integrating both sides, we get
J G = j tan x dx
Y

= log|y|=log|secx|+C L) (1)

[-.-jldyz log |y| andjtanxdx= Iogisequ
Y

Also, given thaty =1, when x=0.

On putting x =0 and y = 1in Eq.(i), we get
log 1=log (sec0°) + C

=3 O=log1+C [sec0°=1](1)

=3 L=l [ log1=0]
On putting C =0 in Eq. (i), we get the required
particular solution as

log|y| = log|sec x|
y = Sec x (1)
which is the required solution.

43. Solve the following differential equation

cos’ x-qz + y = tan x.
dx

All India 2009; Delhi 2008, 2011, 2008C
Given differential equation is

coszxﬁw:tanx
dx
On dividing both sides by cos” x, we get
dy LYy _ ftanx
dx cos’x cos’x
dv " 5
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= — 4+ y-.sec” x =tan x - sec™x —eh

dx
1
[ — = seczx]
Cos” X

which is the linear differential equation of the

form
A ...(i)
dx
On comparing Egs. (i) and (ii), we get
P = sec’xand Q = tanx - sec’x (1

sec?x dx
F=el = gt"¥

[ _[ sec’x dx = tan x + C] (1)

Now, solution of linear differential equation is
given by
yx|F=j(Q x I dx + C
yx e = I tan x - sec?x - " * dx ...(iii)
On putting tan x =t
=  sec’xdx=dt in Eq. (i), we get

yetanx e tt‘ellf dt (1)

= ye™* =t j e'dt — J'[% (t) I e"dt] dt

[usingintegration by parts in _[ te'dt]
- yetanx = hat w j1 % eldt
= ye""=te'—e' +C

ye®"* = tanx - "% — e 4 C [~ tan x =]

On dividing both sides by e""*, we get
y = tan x — 14 Ce™ ™

which is the required solution. (1N
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44. Solve the following differential equation

sec x %’f _y=sinx All India 2009C
X
Given differential equation is
secxd—y—y— sin X
dx

On dividing both sides by sec x, we get
dy y _sinx
dx secx secx

= l—ycosx:sinxcosx sk}
dx
which is a linear differential equation of the
form gx+Py:Q ...(i1)
dx

On comparing Egs. (i) and (ii), we get
P = — cos x and Q = sin x cos x (1
IF = ej— cos x dx _ e—sinx
[ _[ cos x dx = sin x + C] (1)

Now, solution of above equation is given by
ny:ﬁqumm+c
ye ™ SInX = I sin x cosx e” 5™ dx
On putting sinx=t =  cosxdx=dt

ye—sinx: Eﬁ—tdt (1)

=  ye ™= tJ e”'dt - I[% () _[ e‘tdt] dt

[using integration by parts]
= ye~ ¥ = _ et — Jlx (—e hdt

=—te ' + j e”'dt
= ye ™=_tel—e'+C
= ye "™ =—sinxe "™ - e "+ C
[osinx =1
y=—sinx—1+Ce"™ (1)

which is the required solution.
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45. Solve the following differential equation

(xlogx) ’;1 +y =2logx Delhi 2009, 2009C

Given differential equation is

(xlogx)ﬂ+y=2logx
dx

On dividing both sides by x log x, we get
dy LY 2

dx xlogx=; wl

which is a linear differential equation of the
form

g;+Py Q (1)

On comparing Egs. (i) and (ii), we get

b st ()=t )
x log x X
A
[F = e-[ xlog_k s eloglogx
= log x [ e'%8% = x] (1)

[I ] dx-:bputlogx=t:>ldx=dt
x log x X

'. j L o =log|t| =log|log x|]

| xlog x t

Now, solution of above equation is given by
yxIF=[(QxIPdx+C

yxlogx;-jglogxdx (1)
| X

i1

= ylogx=|ong%dx
j|: (log x}J—- dx]

Get More Learning Materials Here : & m @&\ www.studentbro.in



[using integration by parts]

= ylogx=iogx-ZIogx—I—}-Zlogxdx

[‘.'Ildx=log|x|+C]
X

= y log x = 2(logx)2~2.[i0agx

2(log x)*
; 1
[in_[logx dx, putlogx=t:>—d><ﬁdt
X

2
J'tdt t* _ (logx +C]
2 2

= ylog x =2 (log )* - +C

y =2 (logx) — (logx) + "
log x

[dividing both sides by log x] (1)
which is the required solution.

46. Solve the following differential equation

y _
me_' =y — x tan (y ] All India 2009
dx X

Given differential equation is

xgzzy—xtan(z)
dx X

y
y — x fan [*)
- dy _ A D

dx X
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which is a homogeneous differential equation.

On putting  y = vx

= $=v+xd—v (1)
dx dx
in Eg. (i), we get
dv vx—xtanv
V+X—= =v-—fanv
dx X
=4 x 2 = — tanv
dx
_ dv. _ dx )
tanv X
= cotvdv =— 5{5 [ . cotv] (1)
X tanv
On integrating both sides, we get
JCOtvdV“‘— dx
X
= log|sinv|=-log|x|+C

['.‘Jcotvdv=log|sinv\+C]

= log|sinv|+log|x|=
= log|x sinv|=

[ log m + log n=log mn]|

Iog!xsmwl ['.‘V=Z:l(1)

which is the required solution.

4. Solve the following differential equation

(1+ x9) gi +y= tan™t x. Delhi 2009

Get More Learning Materials Here : & m

@ www.studentbro.in



The given differential equation is
(1+x2)g1+y=tan"1x
dx

On dividing both sides by (1+ x%), we get
A
dy P tan” x

= ()
dx 1+x* 1+x°

which is a linear differential equation of the

form
%+PV=Q )
dx
On comparing Egs. (i) and (ii), we get
=
- 1 anszt.an 2x 1)
1+ x? 1+ x
1
e dx
IF = ej”"‘2 _ ptan X

[I 1 5 dx=tan‘1x+C] (1)
T+ X
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Now, solution of above equation is given by

yxIF=[(QxIPdx+C ’
- _1 S g
v X e‘|<1r‘| % jta_n_;  Ltan X dx man
T+ X
On putting tan™'x =
= 1 dx=dt (1)
14+ x ‘

in Eq. (ii1), we get
ye™ Y= |te'dt
Wl

= et X oy _[ e'dt - J[g (t) _[ eidt] dt

dt

[using integration by parts]
]
= ye® X =te' - J1>< e'dt
e
= ye™ ¥=te'-e'+C

tan_] X i

iy ve X _ tan""] X - eran" X_ etun‘ Ty e
On dividing both sides by e“‘“”mI *, we get
A TR T o o I+ |

which is the required solution.

48. Solve the following differential equation

d_y + y =C0S X —sin X Delhi 2009

dx
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Given differential equation is
dy L ;
— +y=C0SX—SInXx (1)
dx

which is a linear differential equation of the
form

dy -
~=+ Py =Q sekl]

On comparing Egs. (i) and (i1), we get
P=1andQ =cosx—-sinx (1)
F=el'® = e (1)

Now, solution of above equation is given by
yxtF=j(Q x IR dx + C

ye' = | e*(cos x — sin x) dx
=4 ye"‘=J.e'“ COSX(fX—Iex sin x dx
il
=h ye' = [cus X J e"dx

d
» J’ {dx (cos x) I exdx} dxil
- j e sin x dx
[applying integration by parts in the first
integral]
= ye* =[e” cosx—J-—sinx-exdx]
- J e* sinxdx (1)
= ye":e"cosx+_[ e’ sinx dx |
~'|-e"‘ sinxdx +C
= ye* =e*cosx+C

On dividing both sides by e*, we get

y = cos x + Ce™"

which is the required solution. (1)
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49. Solve the following differential equation

z—y + 2y tan x =sin x. All india 2008
X
Given differential equation is
-(-j—y+2ytanx:sinx ..(1)
dx
which is a linear differential equation of the
form
8Y o Pyl -..(i)
dx
On comparing Egs. (i) and (ii), we get
P =2 tan xand Q = sin x %))
IF = ejztanxdx: 82|0g| sec x|
— elogseczx — SECE X (1)

Now, solution of above equation is given by
yxlF:j(Qx|F)dx+c
y sec” x = [ sinx - sec? x dx
- - SInX
=  ysec'x= gk (1)
7 Cos X
=  ysec x= | secxtan xdx

_sinx _sinx 1
cos’x COSX COS X

:tanxsech
2
= ysec - x=secx +C
['.'_[secxtanxdxzsecx+C]
1 &

y = ey
secC X seC X

=5 y = cos x + C cos” x (1
which is the required solution.
50. Solve the foliowing differential equation
dy

% - y2 + 2xy. All India 2008
X
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Given differential equation is
29
dx

which is a homogeneous differential equation
as degree of each term is same in the

= y2 + 2 Xy

equation.

Above equation can be written as

dy y*+2xy .
= > ()

dx X

On putting y = VX
dy dv

=% ——=V+X— (1
dx dx

in Eq. (i), we get
dv vzxz + 2vx?

V4 X—=— —=v2 4 2v
dx x>
= v+xg3=vz+2v
dx
gy x—y—zv2+2v—v = x—V=v2+v
dx dx
- L. (1)
vi+v o X
On integrating both sides, we get
_[ dv _ pdx
¢ e X
dv - dx
= J. 1T 1 1y
S S e g *
4 4
J' dv _pdx
-6
v+—| ==
2 2
11
V4 - —
= log|—2 2 =log|x|+C
1 1 1
2 = Y 4 o+
z | 2

[--f dx = ! |02!x#a!‘l (1

Get More Learning Materials Here : & m @&\ www.studentbro.in



L- Ix2-a? 2a Tix+al]

— |ogl.i.|-—|og|xl=c
lv+1|

= Iogl . —lzC
(v +1) - X]
m
[ log m — log n = log (ﬂ]jl
n
|
Y y = VX
= log | —%~—|=C v
% v="
(L :
X |
|
- log |2 = (1)
Xy + X°|

which is the required solution.

51. Solve the following differential equation
(x2 = y2) dx + 2xy dy =0, given thaty = 1, |
when x = 1. Delhi 2008

Given differential equation is

(x* —y?) dx +2xydy =0

which is a homogeneous differential equation
as degree of each term is same.

Above equation can be written as

7 2
(x? —~y)dx=—-2xydy = —GJX:L--—X (1)
dx 2Xxy
On putting y =vXx = E-j}-/-zuﬁ-xd—v- (1)
dx dx

in Eqg. (i), we get
dv  vx? = 2 v =1

V 4+ X — 5=
dx 2vX 2v
dv  v? -1
= K== =
dx 2v
s ] = ] & 2
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¥ g, sAsue (1)

2v 2v
2v dx
= — = — —
v+ 1 X

On integrating both sides, we get

___.d :_I%"

ve 41

On puttingv? +1=t = 2vdv=dt
jgﬁ:-]og|x|+(j
t

— log|t|=—log|x|+C
— log|v’ +1]+log|x|=C [ot=vi+1]
2
= log|5 +1+log|x|=C (i)
X

[ V= Z] (1)
X

Also, given thaty =1, when x =1

On putting x =Tand y =1in Eq. (ii), we get

log2 +log1=C = C=log2 [.log1=0]

On puttingC log 2 in Eq. (ii), we get

X

Iogy ’+!ogx-log2
| X ]
- A §
=% Iog}x E—EY- |=|0g2
RE |
[ log m + log n = log mn]
2 2
= Iog}x +y!=|og2:>x2+y2=2x (1)

which is the required solution.
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52. Solve the following differential equation

dy Xy~ xl, ify =1, whenx =1
dx  x(2y + x) Delhi 2008

Given differential equation is
dy x(2y —x) :,dy B 2xvy—-x2

dx X2y + x) dx 2xy+ X2 il

which is a homogeneous differential equation
because each term of numerator and
denominator have same degree.

On putting y =vx = ﬁ=v+x£‘-{ (P
dx dx
in Eq. (i), we get
dvy  Fwe® =x? Fyv-
V4 xX—= , =
dx 2vxl+x? 2v+1
dv  2v -1
V+ X—=
dx 2v+1
dv 2v -1
— X = =¥
dx 2v+1
gV Byt =
= X— =
dx 2v +1
;?v+1 dv=—d—x
2vi —v+1 X
On integrating both sides, we get
2v +1 dx
_[ . dv=-|-—=
2vi —v+1 X
=5 l=—log|x +C - (i)
where, i:j §v+1 dv |
2vi—v+1
d 7
let 2v+1=A- — 2v ' -v+ 1) +B
dv
— 2v+1=A(4v—-1)+ B .. (iii)

On comparing coefficients of v and constants
from both sides, we get
4A = 2

Get More Learning Materials Here : & m @&\ www.studentbro.in



= A=2—Iand ~A+B=1

= —J—+B:1 = B-——I:}—
2 o 2

On putting A =% and Bz% in Eq. (iii), we

get

1 3
2v+l=—M@v-1)+— (1
2 2 )

On integrating both sides, we get
2v+1

|= dv
‘[2v2—v+1
lav-n+3
2vi —v+1
1 4v — 1
— dv+=
2‘[2\/2- +1 sz - i
dv
= Io 2y -
gl2vi —v+1+ = I .
G i e
) 2 2
4v -1 ]
j Y dv = put2v? —v +1=t

- — 41
= (4v — 1) dv =dt

thenjgtz=log|t]=Iog|2v2—v+1|

- .

1
= I=E|0g|2v2—v+1|

3 d
+ZJ21 :

+_, e
2 2 16 16
1
=—iog|2v2—v+1|+§+j iy
2 4 S ;
V - — + ......
4 16
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(1/2)
( 1)
3, 4 “a
— 7| Iog|2v—v+1+ 4
2 | 4 ﬁ ﬁ
\ 4 )
d
[_[ 5 : 2=l'[an'1i+C
X“+a- a a |
1 3 ~1f 4v =1
= |=—log|2v? — v +1| + —= tan '(——)
2 V7 V7
On putting the value of I in Eq. (ii), we get
—I0g|2v --».f+1|+3—ﬂ\/?‘[;.rln'T("'h'f,_*1
2 7 7
=—log| x|+ C (1/2)
1 2y* l 347 | x
—lo M-* 1+-—~tan
= B glxz x |7 J7

]
~log| x| +C ['-'putv:§

H \

1 2y° y \ 3 _1(4)’—"
+1 +———t

& X | N7 X

=—log| x|+ C ..(Iv)

Also, given thaty =1, when x =1
On putting x =1and y = 1in Eq. (iv), we get

1 37 -1( 3 )

Toel21+ 27 tan [ 2] =~ tog 1+ C
5 B[R+ 17

—_ 1 W7 mn"(ﬁ%—_-\ =Cl:logl= O]
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—_— Ei‘t\Jgi P ;? naas s k\ﬂj 7r), . o _

On putting the value of C in Eq. (iv), we get
1, 2y% — xy + x* 3«/_tn (4}/ x]
g xz 7

547 ( ]
= — + — |O 2+———tan
log | x| 5 o8 7

2

. 2\ V2
= Iog(zy -—xy+x) +Iog>~:—lc:)g(2)1‘{2
X

—
=

v

tan

Eij{ji_ -1 | ”j;E; j (;fi};;;xﬁﬁj)
7 1

~-B
[ tan A —tan”'B = tan“( 2 AB}] (1/2)

1+
= log 2y? — xy + x)"? - log V2

o A el T
:.B%ztan*1 [(4}( 4) I}

4x +12y

-

2 2
|Og(2y > xz}’ + X ] — log2y? — xy + A"

—

X
2)1f2

= log(2y? — xy + x)'* — log x|

D R
=> log\Fy ;y =
3( ( ﬁ)

X + 3y
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2 2
= log\!?} ;y+x

= E’ﬁ tan™’ [ﬁx s ﬁy]
7

X+ 3y

(1/2)

which is the required solution.
6 Marks Questions

53. Find the particular solution of the differential
equation (3xy + yz)dx +(x% +xy)dy =0,forx =1
andy =1 Delhi 2013C

Given differential equation is

3x2 + yAdx + (x2 + xy)dy =0
: d dyy 3xy +y* :
It can be rewrittenas — = T—_ ..(0)

which is a homogeneous dtfferentl:lll equation

of degree 2.
O i =yX = _d_y vV + xgx—f
n putting y=V e = -
Eai), tv+xdv 3vx? + v2x?
we ge —
in Ea.{ : dx X% + vx?
dv _3v+v N
= dx 1+v :
2 2
- xgi:_[3v+v +v+v} 1)
dx 1+ v
dv 2v? + 4v 1+ vdv dx
SX— == | = 5/ =~
dx 1+ v 2(ve + 2v) X
On integrating both sides, we get
j_iﬂ——dxf:- (e () ()
2(v2+2v) X

Again, put vi+2v=7z =Qv+2dv=dz

=5 (1+v)dv~/=(—3!—E
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Then, Eq. (ii) becomes,
I__ S j - (1

= %Iog|z|=—loglxl+|08]cl

3 &HogIZH 4log| x|1= log| C|

= log| zx*| = 4log|C|

- zx* =C*=C, zx* =C,

where, c,=C*

= w2420 =C, [putz =v>+2v]

2
= x* (K- + g—}i] =, [put V= Z«]...(iii) (1)
x° X X

Also, given thaty =1for x =1
On putting x =1and y = 1in Eq. (iii), we get

1 1

Also, given thaty = 1for x =1.

So, on putting C, = 3 in Eq. (ii1), we get

2
A E oy o y2x2 4+ 2yx° =3 §))
x> X

which is the required particular solution.
54. Show that the differential equation
2ye* /Y dx+(y—2xe*!Y)dy = 0 is homogeneous.
Find the particular solution of this
differential equation, given that x=0, when
y=1
HOTS; Delhi 2013
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) Fnrstly, replace X by ?Lx and y by ly i f(x y) of
given differential equation to check that it is :
homogeneous If it is homogeneous, then put

x=yyand ——=v+ y-q— and then solve.
dy dy

Given dlfferentlal equation is
2y eVdx + (y — 2x e)dy = 0. It can be written

dS

dx  2xe™” ~y
dy zyexf}/

X

...(1)

2xe¥ —y

Let F(x,y)=

X

2ye”

On replacing x by Ax and y by Ay both sides,

we get
?l.x
2Ax e — Ay
F(Ax, Ay) = P
24y e
xly _
= FOxAy) = M2xe™" =Y) 20k yl ()

AQ2yeX)
Thus, F(x,y) is a homogeneous function of

degree zero. Therefore, the given differential
equation is a homogeneous differential

equation. (1)

To solve it, put x=vy

= L. (1/2)
dy dy
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Wt Bl e el ph g
o d 2e"

dv 2ve' -1 2ve¥ —1— 2ve¥
:}y — —V =
dy  2é" 2e”
- T (1)
y

On integrating both sides, we get
IZe” dv:wj.ﬂ = 2e"=-logly |+C
y

Now, replace v by s , we get
2e™ +log|y|=C (i) (1%2)

Also, given that x=0, wheny =1,

On substituting x=0 and y =1in Eq. (ii), we get
2e° +log|1|=C=C=2

On substituting the value of Cin Eq. (ii), we get
2" +log|y|=2

which is the required particular solution of the
given differential equation. (1)

55. Show that the differential equation

X gz—sin(x) +x—Yy sin[z] =0 is homogeneous.
dx X X

Find the particular solution of this differential

n
equation, given that x=1, when y =3 Delhi 2013
elhi
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Given differential equation is

x%sin(z)-—-ysin(z)—x =% &=X—+-]-——
d X

X X :
X . d sin”

X

I:dividing both sides by x sin(}’-ﬂ

Let (x, y):z+i

X sin”.

X

On replacing x by Ax and y by Ay on both
sides, we get

F(lx,?\.y)=;:y— 11 P
X sin Y X sin--y-
Ax X

=A% F(x,y)

So, given differential equation is homogeneous.

(2)
On putting y = vx

=3 Efl/—=v+ x@ in Eq.(i), we get (1)
dx dx
dv 1
V+X—=V——r
dx sinv
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dv 1 dx

= X—=——— = Ssinvdv=——
dx sinv X
On integrating both sides, we get
. dx
Jsmvdv=— —
| ¥
= —cosv=—log|x|+C
-_—>—cosy/x=—log]x|+C '.-v=v-] (1%2) ...(i0)
X
Also, given that x =1 wheny = g

On putting x=1andy = g in Eq. (ii}, we get

—cos(g):—logllh(j

— -0=-04+C = C=0
On putting the value of C in Eq. (i1), we get -

cos’ =In x|
” |
which is the required solution. (1%)

56. Find the particular solution of the

differential equation g—{+xcoty:2y+y2coty,
y
(y#0), given that x=0, when y:g-.

All India 2013
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Given differential equation is

?+xcoty:2}’+}’2 coty,ly #0)
4

which is a linear differential equation.

On comparing with :X +Px=Q, we get

P =coty and Q =2y +y” coty
A =elPdr — gl eotydr _ glogsiny _ siny  (1%)

Now, the solution of above differential
equation is given by
x-(p=[Q-(RAdy+C

Xsiny = J 2y +y* coty) sinydy +C

=2Iysinydy+jy2 cosydy +C
T

= 2I ysinydy-t—yzj cosy dy

u_[ [(;;}/2]_[ Cosydy]dy+C
[using integration by partsin second integral]
=2‘[y5in}./dy+y2 siny—2jysinydy+C
=y?siny+C
— ><5iny=y2 siny+C (1) (2)

Also, given that x=0, wheny= —273
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On putting x=0andy = g in Eq. (i), we get

,],[2

2
0=(E} 5in£+C=>C=—— (1/2)
2 2 4

On putting the value of C in Eq. (i), we get
2 2
; gy n 27 T
Xsmy=y Slny———4—=" X=Y *‘—I'COSBCY

which is required particular solution of given
differential equation. (2)

57. Show that the differential equation
[Xsin’ (zl—y]dm— xdy =0 is homogeneous.
X

Find the particular solution of this
differential equation, given that

}’ZE: when x=1, All Iindia 2013
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Given differential equation is

|:x sin’ (X) -y} dx + xdy =0
X

. Y
—xsin®| >
dy d (x]

=5 = ciabl)
dx X
Yy — X sinz(z]
Let F(x,y) = A
On replacing x by Ax and y by Ly both sides,
we get
?L[y - X sinz[}f)]
F(Ax, Ay) = a2 P R [F(x, V)]
A X
Thus, given differential equation is a
homogeneous differential equation. (1)
On puttingy = vx::»-q)i =v+ x% in Eq. (i), we
dx X
get
| VX — X Sinz(w)
dv X
V+X—=
dx X
Vv .« 2 . dv - 2

= V+X—=V—58in"Vv = X—=-sin"v

dx dx
= .. (2)

X

On intergrating both sides, we get
j cosec’vdv + J' 2
X

— —cotv +log|x=C
=5 - cot[X) +log|x=C I: V= Z]...(ii)
X X

Also, given that, y = %,when x=1
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On puttingx=1andy = -1—:—, in Eq. (ii), we get

- cot(-ﬁ-] +log|1|=C (2)

=5 C=-1 [ cotZ = 1]
4
On putting the value of C in Eq. (ii}, we get
- cot(z] + log| x| =~1
X
= 1+ log| x|- cot(i] =0
X

which is the required particular solution of
given differential equation. (1)

58. Find the particular solution of the differential
equation (tan™ y —x)dy =(1+y?)dx, given that
x=0,wheny=0. | All India 2013

Given differential equation is
(tan”'y — x)dy = (1+ y?) dx

tan'y—x dx dx —x tan’'y
T g e 2 2
1+y dy dy 1+y° 14y
dx 1 _ tan"'y

= — + - X
dy H—y2 1+y2

which is a linear differential equation of first

order. 1)
On comparing with g-{ + Px=Q, we get
Y
-1
P= : : and Q=téln ;
1+y 1+y
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J' de_

IF=e' "=e ™ =" Y (1
Now, solution of above differential equation is
given by

x-(I=[Q- (IF)dy+C
= = | anly ey i o )

1+ y
On putting t=tan"'y = dt= = dy
1+y

=
x - et ”=It-etdt+C
=
= x.e" V=t-e‘-_[1=e‘dt+C

[using integration by parts]

'y . el — e+ C

= Xx-e
= x-e™ Y(tanTy—1) e Y +C...(0) (1)
Also, given that, when x=0, then y=0.
On putting x=0,y =0 in Eq. (i), we get
O=(tan"'0-T)e™ ' ®4+C

=  0=0-1e’+C = 0=0-1-1+C
= C=1 (1
On putting the value of C in Eq. (i), we get

x- €'Y = (tan™ y=1)- e Y 41

. i -1
= x=tan 'y —-1+e @ Y

which is the required particular solution of the
differential equation. (1)
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