Solution of Different Types of Differential Equations

4 Marks Questions

1. Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, given that y = 0 when x = 1. All India 2014

Given differential equation is

$$\frac{dy}{dx} = 1 + x + y + xy$$

$$\Rightarrow \frac{dy}{dx} = 1(1+x) + y(1+x)$$

$$\Rightarrow \frac{dy}{dx} = (1+x)(1+y) \qquad \dots (i) \quad (1)$$

On separating variables, we get

$$\frac{1}{(1+y)} \, dy = (1+x) \, dx \qquad \dots (ii)$$

On integrating both sides of Eq. (ii), we get

$$\int \frac{1}{1+y} \, dy = \int (1+x) \, dx$$

$$\Rightarrow$$
 $\log |1+y| = x + \frac{x^2}{2} + C$...(iii) (1)

Also, given that y = 0, when x = 1.

On substituting x = 1, y = 0 in Eq. (iii), we get

$$\log|1+0| = 1 + \frac{1}{2} + C \Rightarrow C = -\frac{3}{2} \ [\because \log 1 = 0]$$
(1)

Now, on substituting the value of C in Eq. (iii), we get

$$\log|1+y| = x + \frac{x^2}{2} - \frac{3}{2}$$

which is the required particular solution of given differential equation. (1)

2. Find the particular solution of the differential equation $x \frac{dy}{dx} - y + x \csc\left(\frac{y}{x}\right) = 0$ or $\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0, \text{ given that } y = 0, \text{ when } x = 1.$ All India 2014C, 2011; Delhi 2009

$$x\frac{dy}{dx} - y + x \operatorname{cosec}\left(\frac{y}{x}\right) = 0$$

$$\Rightarrow \frac{dy}{dx} - \frac{y}{x} + \operatorname{cosec}\left(\frac{y}{x}\right) = 0$$

Above equation can be written as

$$\frac{dy}{dx} = \frac{y}{x} - \csc\left(\frac{y}{x}\right) \qquad \dots (i)$$

which is a homogeneous differential equation.

On putting
$$y = vx$$
,

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \text{ in Eq. (i), we get}$$

$$v + x \frac{dv}{dx} = \frac{vx}{x} - \csc\left(\frac{vx}{x}\right)$$

$$\Rightarrow v + x \frac{dv}{dx} = v - \csc v$$

$$\Rightarrow x \frac{dv}{dx} = -\csc v \Rightarrow \frac{dv}{\csc v} = \frac{-dx}{x}$$
 (1)
On integrating both sides, we get

$$\int \frac{dv}{\csc v} = \int -\frac{dx}{x}$$

$$\Rightarrow \int \sin v \, dv = \int -\frac{dx}{x} \qquad \left[\because \frac{1}{\csc v} = \sin v \right]$$

$$\Rightarrow -\cos v = -\log|x| + C$$

$$\left[\because \int \sin x \, dx = -\cos x + C \right]$$
and
$$\int \frac{1}{v} \, dx = \log|x| + C$$

On putting
$$v = \frac{y}{x}$$
, we get
$$-\cos\frac{y}{x} = -\log|x| + C$$

$$\Rightarrow \cos\frac{y}{x} = +(\log|x| - C)$$

$$\Rightarrow \frac{y}{x} = \cos^{-1}(\log|x| - C)$$

$$\Rightarrow y = x \cos^{-1}(\log|x| - C) \quad ...(ii) (11/2)$$

Also, given that x = 1 and y = 0.

On putting above values in Eq. (ii), we get

$$0 = 1\cos^{-1}(\log|1| - C)$$

$$\Rightarrow \cos 0^{\circ} = 0 - C$$

$$\Rightarrow 1 = 0 - C$$

$$\Rightarrow C = -1$$

$$\therefore y = x \cos^{-1}(\log|x| + 1)$$
(1½)

which is required solution.

3. Solve the differential equation $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$. Foreign 2014; Delhi 2009

$$(x \log x) \cdot \frac{dy}{dx} + y = \frac{2}{x} \log x$$

On dividing both sides by $x \log x$, we get

$$\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x^2} \frac{\log x}{\log x} = \frac{2}{x^2} \dots (i)$$

which is a linear differential equation of first order and is of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{1}{x \log x}$$
 and $Q = \frac{2}{x^2}$ (1)

$$\therefore \qquad \mathsf{IF} = e^{\int \frac{1}{x \log x} \, dx} = e^{\log \log x}$$

$$\left[\text{for } \int \frac{1}{x \log x} dx \Rightarrow \text{put } \log x = t \Rightarrow \frac{1}{x} dx = dt \right]$$
$$\therefore \int \frac{1}{t} dt = \log|t| = \log|\log x|$$

$$\Rightarrow \qquad \text{IF} = \log x \qquad \qquad [\because e^{\log x} = x]$$
(1)

Now, solution of above equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$
 ...(iii)

On putting IF = log x and
$$Q = \frac{2}{x^2}$$
 in Eq. (iii),

we get

$$y \log x = \int \frac{2}{x^2} \log x \, dx$$

$$\Rightarrow y \log x = \log x \int \frac{2}{x^2} \, dx$$

$$-\int \left(\frac{d}{dx} (\log x) \cdot \int \frac{2}{x^2} \, dx\right) dx$$

[using integration by parts]

$$\Rightarrow y \log x = \log x \cdot 2\left(-\frac{1}{x}\right)$$

$$-\int \frac{1}{x} \cdot 2\left(-\frac{1}{x}\right) dx \quad (1)$$

$$\Rightarrow y \log x = -\frac{2}{x} \log x - \int \frac{2}{x}\left(-\frac{1}{x}\right) dx$$

$$\Rightarrow y \log x = -\frac{2}{x} \log x + \int \frac{2}{x^2} dx$$

$$\therefore y \log x = -\frac{2}{x} \log x - \frac{2}{x} + C \quad (1)$$

which is the required solution.

4. Find the general solution of the differential equation $(x - y) \frac{dy}{dx} = x + 2y$.

Delhi 2014C; All India 2010

$$(x - y) \frac{dy}{dx} = x + 2y$$

$$\Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y} \qquad \dots (i) \quad (1)$$

which is a homogeneous equation.

On putting y = vx

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots (ii)$$

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{x + 2vx}{x - vx} = \frac{1 + 2v}{1 - v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v = \frac{1 + 2v - v + v^2}{1 - v}$$

$$\Rightarrow \qquad x \frac{dv}{dx} = \frac{1 + v + v^2}{1 - v}$$

$$\Rightarrow \frac{1-v}{v^2+v+1}dv = \frac{dx}{x}$$

On integrating both sides, we get

$$\int \frac{1-v}{v^2+v+1} dv = \int \frac{dx}{x} \tag{1}$$

$$\Rightarrow I = \log|x| + C \qquad ...(iii)$$
where,
$$I = \int \frac{1 - v}{v^2 + v + 1} dv$$
Let
$$1 - v = A \cdot \frac{d}{dv} (v^2 + v + 1) + B$$

$$\Rightarrow 1 - v = A(2v + 1) + B$$

On comparing coefficients of v and constant term from both sides, we get

$$2A = -1 \implies A = -\frac{1}{2} \text{ and } A + B = 1$$

$$\Rightarrow -\frac{1}{2} + B = 1 \implies B = 1 + \frac{1}{2} \implies B = \frac{3}{2}$$
So, we write $1 - v = -\frac{1}{2}(2v + 1) + \frac{3}{2}$

Then,
$$I = \int \frac{-\frac{1}{2}(2v+1) + \frac{3}{2}}{v^2 + v + 1} dv$$

$$\Rightarrow I = -\frac{1}{2} \int \frac{2v+1}{v^2 + v + 1} dv + \frac{3}{2} \int \frac{dv}{v^2 + v + 1}$$

$$\Rightarrow I = -\frac{1}{2} \log |v^2 + v + 1|$$

$$+ \frac{3}{2} \int \frac{dv}{v^2 + v + 1 + \frac{1}{4} - \frac{1}{4}}$$

$$\left[\because \int \frac{2v+1}{v^2 + v + 1} dv \Rightarrow \text{put } v^2 + v + 1 = t \right]$$

$$(2v+1) dv = dt$$

$$\therefore \int \frac{dt}{t} = \log |t| + c = \log |v^2 + v + 1| + c$$

$$\Rightarrow I = -\frac{1}{2} \log |v^2 + v + 1| + \frac{3}{2} \int \frac{dv}{\left(v + \frac{1}{2}\right)^2 + \frac{3}{4}}$$

$$\Rightarrow I = -\frac{1}{2} \log |v^2 + v + 1| + \frac{3}{2} \int \frac{dv}{\left(v + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$\Rightarrow I = -\frac{1}{2} \log |v^2 + v + 1|$$

$$+ \frac{3}{2} \times \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + C$$

$$\left[\because \int \frac{dx}{v^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C \right]$$

$$\Rightarrow I = -\frac{1}{2}\log|v^2 + v + 1|$$

$$+\frac{3}{\sqrt{3}}\tan^{-1}\left(\frac{2v+1}{\sqrt{3}}\right) + C$$

On putting $v = \frac{y}{x}$, we get

$$I = -\frac{1}{2} \log \left| \frac{y^2}{x^2} + \frac{y}{x} + 1 \right| + \sqrt{3} \tan^{-1} \left(\frac{\frac{2y}{x} + 1}{\sqrt{3}} \right) + C$$

$$\left[\because y = vx \therefore v = \frac{y}{x}\right]$$

$$\Rightarrow I = -\frac{1}{2} \log \left| \frac{y^2 + xy + x^2}{x^2} \right|$$

$$+\sqrt{3}\tan^{-1}\left(\frac{2y+x}{\sqrt{3}x}\right)+C$$

On putting the value of I in Eq. (iii), we get

$$-\frac{1}{2}\log\left|\frac{y^2 + xy + x^2}{x^2}\right| + \sqrt{3} \tan^{-1}\left(\frac{2y + x}{\sqrt{3}x}\right)$$

$$= \log |x| + C$$

which is the required solution.

5. Find the particular solution of the differential equation $\left\{x \sin^2\left(\frac{y}{x}\right) - y\right\} dx + x dy = 0$, given

that
$$y = \frac{\pi}{4}$$
, when $x = 1$.

All India 2014C

(1)

$$\left[x \sin^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x} \dots (i)$$

which is a homogeneous differential equation.

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + \frac{x \, dv}{dx}$$
 in Eq. (i), we get
$$v + x \frac{dv}{dx} = \frac{vx - x \sin^2\left(\frac{vx}{x}\right)}{x}$$

$$\Rightarrow v + x \frac{dv}{dx} = v - \sin^2 v \Rightarrow x \frac{dv}{dx} = -\sin^2 v$$

$$\Rightarrow \cos^2 v \, dv = -\frac{dx}{x}$$
(1)

On integrating both sides, we get

$$\int \csc^2 v \, dv + \int \frac{dx}{x} = 0$$

$$\Rightarrow -\cot v + \log|x| = C$$

$$\Rightarrow -\cot\left(\frac{y}{x}\right) + \log|x| = C \qquad \left[\because v = \frac{y}{x}\right] \quad \dots \text{(ii)}$$
(1)

Also, given that $y = \frac{\pi}{4}$, when x = 1.

On putting x = 1 and $y = \frac{\pi}{4}$ in Eq. (ii), we get

$$-\cot\left(\frac{\pi}{4}\right) + \log 1 = C$$

$$C = -1 \qquad \left[\because \cot \frac{\pi}{4} = 1\right]$$
 (1)

On putting this value of C in Eq. (ii), we get

$$-\cot\left(\frac{y}{x}\right) + \log|x| = 1$$

$$\Rightarrow 1 + \log|x| - \cot\left(\frac{y}{x}\right) = 0$$

which is the required particular solution of given differential equation. (1)

6. Find the particular solution of the differential equation

$$\frac{dy}{dx} = \frac{x (2\log x + 1)}{\sin y + y \cos y}, \text{ given that } y = \frac{\pi}{2}, \text{ when}$$

$$x = 1.$$
Delhi 2014

$$\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$$

On separating the variables, we get

$$(\sin y + y \cos y) dy = x(2 \log x + 1) dx$$

$$\Rightarrow$$
 siny dy + y cos y dy = 2x log x dx + x dx (1)

On integrating both sides, we get

$$\int \sin y \, dy + \int y \cos y \, dy$$

$$=2\int_{11}^{x}\log x\,dx+\int x\,dx$$

$$\Rightarrow$$
 $-\cos y + \left[y \int \cos y \, dy \right]$

$$-\int \left\{ \frac{d}{dy} (y) \int \cos y \, dy \right\} dy$$

$$= 2 \left[\log x \int x \, dx - \int \left\{ \frac{d}{dx} (\log x) \int x \, dx \right\} \, dx \right] + \frac{x^2}{2}$$

(1)

$$\Rightarrow$$
 - cos y + y sin y - \int sin y dy

$$= 2 \left[\frac{x^2}{2} \log x - \int \left\{ \frac{1}{x} \frac{x^2}{2} \right\} dx \right] + \frac{x^2}{2}$$

 \Rightarrow - cos y + y sin y + cos y

$$= x^2 \log x - \int x \, dx + \frac{x^2}{2}$$

$$\Rightarrow y \sin y = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C$$

$$\Rightarrow y \sin y = x^2 \log x + C \qquad ...(i)$$
 (1)

Also, given that $y = \frac{\pi}{2}$, when x = 1.

On putting $y = \frac{\pi}{2}$ and x = 1 in Eq. (i), we get

$$\frac{\pi}{2}\sin\left(\frac{\pi}{2}\right) = (1)^2\log(1) + C$$

$$\Rightarrow \qquad C = \frac{\pi}{2} \left[\because \sin \frac{\pi}{2} = 1, \log 1 = 0 \right]$$

On substituting the value of C in Eq. (i), we get

$$y \sin y = x^2 \log x + \frac{\pi}{2}$$

which is the required particular solution. (1)

7. Solve the following differential equation

$$(x^2-1)\frac{dy}{dx}+2xy=\frac{2}{x^2-1}$$

Delhi 2014; All India 2014C

Firstly, divide the given differential equation by $(x^2 - 1)$ to convert it into the form of linear differential equation and then solve it.

Given differential equation is

$$(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{2}{x^2 - 1}$$

On dividing both sides by $(x^2 - 1)$, we get

$$\frac{dy}{dx} + \frac{2x}{x^2 - 1}y = \frac{2}{(x^2 - 1)^2}$$

which is a linear differential equation. (1)

On comparing with the form $\frac{dy}{dx} + Py = Q$, we

get
$$P = \frac{2x}{x^2 - 1}, Q = \frac{2}{(x^2 - 1)^2}$$

$$\left[put x^2 - 1 = t \Rightarrow 2x dx = dt \text{ in} \int \frac{2x}{x^2 - 1} dx, \text{ then} \right]$$

$$\left[\int \frac{2x}{x^2 - 1} dx = \int \frac{1}{t} dt = \log t = \log(x^2 - 1) \right]$$

Hence, the required general solution is

$$y \cdot IF = \int Q \times IF \, dx + C$$

 $\Rightarrow y(x^2 - 1) = \int \frac{2}{(x^2 - 1)^2} \times (x^2 - 1) \, dx + C$ (1)

$$\Rightarrow y(x^2 - 1) = \int \frac{2}{x^2 - 1} dx + C$$

$$\Rightarrow y(x^2 - 1) = \log \left| \frac{x - 1}{x + 1} \right| + C$$

$$\left[\because \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| \right]$$

which is the required differential equation. (1)

8. Find the particular solution of the differential equation $e^x \sqrt{1 - y^2} dx + \frac{y}{x} dy = 0$, given that y = 1, when x = 0. Delhi 2014

$$e^{x} \sqrt{1 - y^{2}} dx + \frac{y}{x} dy = 0$$

$$\Rightarrow \qquad e^{x} \sqrt{1 - y^{2}} dx = \frac{-y}{x} dy$$

On separating the variables, we get

$$\frac{-y}{\sqrt{1-y^2}}\,dy = x\,\,\mathrm{e}^x\!dx\tag{1}$$

On integrating both sides, we get

$$\int \frac{-y}{\sqrt{1-y^2}} \, dy = \int x \, e^x dx$$

On putting $1 - y^2 = t \Rightarrow -y \, dy = \frac{dt}{2}$ in LHS, we

get

$$\int \frac{1}{2\sqrt{t}} dt = \int x e^{x} dx$$

$$\Rightarrow \frac{1}{2} [2\sqrt{t}] = x \int e^{x} dx - \int \left[\frac{d}{dx} (x) \int e^{x} dx \right] dx$$

$$\Rightarrow \sqrt{1 - y^{2}} = x e^{x} - \int e^{x} dx \quad [\because t = 1 - y^{2}]$$
(1)

$$\Rightarrow \qquad \sqrt{1 - y^2} = x e^x - e^x + C \qquad \dots (i)$$

Also, given that y = 1, when x = 0

On putting y = 1 and x = 0 in Eq. (i), we get

$$\sqrt{1-1} = 0 - e^0 + C$$
 $C = 1$ [: $e^0 = 1$] (1)

On substituting the value of C in Eq. (i), we get

$$\sqrt{1 - y^2} = x e^x - e^x + 1$$

which is the required particular solution of given differential equation. (1)

 \Rightarrow

9. Solve the following differential equation Delhi 2014

$$\operatorname{cosec} x \log y \, \frac{dy}{dx} + x^2 y^2 = 0.$$
 Delhi

Firstly, separate the variables, then integrate by using integration by parts.

Given differential equation is

$$\csc x \log y \frac{dy}{dx} + x^2 y^2 = 0 \qquad ...(i)$$

It can be rewritten as

$$\csc x \log y \frac{dy}{dx} = -x^2 y^2$$

On separating the variables, we get

$$\frac{\log y}{y^2} \, dy = \frac{-x^2}{\csc x} \, dx$$

On integrating both sides, we get

$$\int \frac{\log y}{y^2} \, dy = -\int \frac{x^2}{\cos x} \, dx \implies l_1 = l_2 \dots (ii)$$

where, $I_1 = \int \frac{\log y}{v^2} dy$

Put
$$\log y = t \Rightarrow y = e^t$$
, then $\frac{dy}{y} = dt$

$$\begin{bmatrix} \cdot \cdot \cdot t = \log v \text{ and } e^{-t} = 1 \end{bmatrix}$$

and
$$I_2 = -\int \frac{x^2}{\csc x} dx$$

$$= -\int x^2 \sin x dx$$

$$= -x^2 \int \sin x dx - \int \left[\frac{d}{dx} (x^2) \int \sin x dx \right] dx$$

$$= -x^2 (-\cos x) - \int [2x(-\cos x)] dx$$

$$= x^2 \cos x + 2 \int x \cos x dx$$

$$= x^2 \cos x + 2 \left[x \int \cos x dx \right]$$

$$- \int \left\{ \frac{d}{dx} (x) \int \cos x dx \right\} dx$$

$$= x^2 \cos x + 2 \left[x \sin x - \int \sin x dx \right]$$

$$= x^2 \cos x + 2x \sin x + 2 \cos x + C_2(iv)$$
(1)

On putting the values of I_1 and I_2 from Eqs.(iii) and (iv) in Eq. (ii), we get

$$-\frac{\log y}{y} - \frac{1}{y} + C_1 = x^2 \cos x + 2x \sin x$$

$$+ 2 \cos x + C_2$$

$$\Rightarrow -\frac{(1+\log y)}{y} = x^2 \cos x + 2x \sin x$$

$$+ 2 \cos x + C_2 - C_1$$

$$\Rightarrow -\frac{(1+\log y)}{y} = x^2 \cos x + 2x \sin x$$

$$+2\cos x + C$$

where, $C = C_2 - C_1$

which is the required solution of given differential equation. (1)

10. Find the particular solution of the differential equation $x(1 + y^2) dx - y (1 + x^2) dy = 0$, given that y = 1, when x = 0. All India 2014

Given differential equation is

$$x(1+y^{2}) dx - y(1+x^{2}) dy = 0$$

$$\Rightarrow x(1+y^{2}) dx = y(1+x^{2}) dy$$

On separating the variables, we get

$$\frac{y}{(1+y^2)} \, dy = \frac{x}{(1+x^2)} \, dx \tag{1}$$

On integrating both sides, we get

$$\int \frac{y}{1+y^2} dy = \int \frac{x}{(1+x^2)} dx$$

$$\Rightarrow \frac{1}{2} \log|1+y^2| = \frac{1}{2} \log|1+x^2| + C \qquad ...(i)$$

$$\begin{bmatrix} |\det 1+y^2 = u \Rightarrow 2y \, dy = du, \\ |\tan 1 = \frac{y}{1+y^2} \, dy = \int \frac{1}{2u} \, du = \frac{1}{2} \log|u| \\ |\arctan 1 = \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{v} \, dv = \frac{1}{2} \log|v| \end{bmatrix}$$

and let
$$1 + x^2 = v \Rightarrow 2x dx = dv$$
,
then $\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{1}{v} dv = \frac{1}{2} \log|v|$

Also, given that y = 1, when x = 0. (1)

On substituting the values of x and y in Eq. (i), we get

$$\frac{1}{2}\log|1+(1)^2| = \frac{1}{2}\log|1+(0)^2| + C$$

$$\Rightarrow \qquad \frac{1}{2}\log 2 = C \qquad [\because \log 1 = 0]$$

On putting $C = \frac{1}{2} \log 2$ in Eq. (i), we get

$$\frac{1}{2}\log|1+y^2| = \frac{1}{2}\log|1+x^2| + \frac{1}{2}\log 2$$

$$\Rightarrow \log |1 + y^2| = \log |1 + x^2| + \log 2$$
 (1)

$$\Rightarrow \log|1+y^2| - \log|1+x^2| = \log 2$$

$$\Rightarrow \log \left| \frac{1+y^2}{1+x^2} \right| = \log 2 \left[\because \log m - \log n = \log \frac{m}{n} \right]$$

$$\Rightarrow \frac{1+y^2}{1+x^2} = 2$$

$$\Rightarrow$$
 1+ $y^2 = 2 + 2x^2 \Rightarrow y^2 - 2x^2 - 1 = 0$

which is the required particular solution of given differential equation. (1)

11. Find the particular solution of the differential equation $\log \left(\frac{dy}{dx} \right) = 3x + 4y$ equation, given that y = 0, when x = 0. All India 2014

$$\log\left(\frac{dy}{dx}\right) = 3x + 4y$$

$$\Rightarrow \frac{dy}{dx} = e^{3x + 4y}$$

$$[\because \log m = n \Rightarrow e^n = m]$$

$$\Rightarrow \frac{dy}{dx} = e^{3x} e^{4y}$$
 (1)

On separating the variables, we get

$$\frac{1}{e^{4y}} dy = e^{3x} dx$$

On integrating both sides, we get

$$\int e^{-4y} dy = \int e^{3x} dx$$

$$\Rightarrow \frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} + C \qquad ...(i) (1)$$

Also, given that y = 0, when x = 0.

On putting y = 0 and x = 0 in Eq. (i), we get

$$\frac{e^{-4(0)}}{-4} = \frac{e^{3(0)}}{3} + C$$

$$\Rightarrow \qquad -\frac{1}{4} = \frac{1}{3} + C \qquad [\because e^{-0} = e^{0} = 1]$$

$$\Rightarrow \qquad C = -\frac{1}{4} - \frac{1}{3}$$

$$\therefore \qquad C = \frac{-7}{12} \qquad (1)$$

On substituting the value of C in Eq. (i), we get

$$\frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} - \frac{7}{12}$$

which is the required particular solution of given differential equation. (1)

12. Solve the differential equation

$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}.$$

All India 2014

Given differential equation is

$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$$

On dividing both sides by $(1 + x^2)$, we get

$$\frac{dy}{dx} + \frac{1}{(1+x^2)}y = \frac{e^{\tan^{-1}x}}{1+x^2}$$

It is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q$$

On comparing, we get

$$P = \frac{1}{1+x^2}$$
 and $Q = \frac{e^{\tan^{-1}x}}{1+x^2}$

$$\therefore IF = e^{\int P \, dx} = e^{\int \frac{1}{1+x^2} \, dx} = e^{\tan^{-1} x}$$

$$\left[\because \int \frac{1}{1+x^2} \, dx = \tan^{-1} x \right]$$
 (1)

Then, required solution is

$$(y \cdot \mathsf{IF}) = \int (Q \cdot \mathsf{IF}) dx + C$$

$$\therefore y e^{\tan^{-1} x} = \int \frac{e^{\tan^{-1} x} \cdot e^{\tan^{-1} x}}{1 + x^2} dx + C$$

$$\Rightarrow y e^{\tan^{-1} x} = \int \frac{e^{2 \tan^{-1} x}}{1 + x^2} dx + C$$

$$\Rightarrow ye^{\tan^{-1}x} = I + C$$
 ...(i) (1)

where,
$$I = \int \frac{e^{2 \tan^{-1} x}}{1 + x^2} dx$$

Put
$$\tan^{-1} x = t \Rightarrow \frac{1}{1+x^2} dx = dt$$

$$I = \int e^{2t} dt$$

$$\Rightarrow I = \frac{e^{-1}}{2} \Rightarrow I = \frac{e^{-1}}{2} \tag{1}$$

On putting the value of I in Eq. (i), we get

$$y e^{\tan^{-1} x} = \frac{e^{2 \tan^{-1} x}}{2} + C$$

which is the required general solution of given differential equation. (1)

13. Find a particular solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$, given that y = 0, when $x = \frac{\pi}{3}$. Foreign 2014

Given differential equation is

$$\frac{dy}{dx} + 2y \tan x = \sin x$$

which is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$.

On comparing, we get

$$P = 2 \tan x \text{ and } Q = \sin x$$

$$\therefore \text{ IF} = e^{2 \int \tan x \, dx} = e^{2 \log |\sec x|}$$

$$= e^{\log \sec^2 x}$$

$$= \sec^2 x$$

$$[\because m \log n = \log n^m]$$

$$= \sec^2 x$$

$$[\because e^{\log x} = x]$$

The general solution is given by

$$Y \cdot IF = \int Q \times IF \, dx + C \qquad \dots (i) \qquad (1)$$

$$\Rightarrow \qquad y \sec^2 x = \int (\sin x \cdot \sec^2 x) \, dx + C$$

$$\Rightarrow \qquad y \sec^2 x = \int \sin x \cdot \frac{1}{\cos^2 x} \, dx + C$$

$$\Rightarrow \qquad y \sec^2 x = \int \tan x \sec x \, dx + C$$

$$\Rightarrow$$
 $y \sec^2 x = \sec x + C$...(ii)

Also, given that y - 0, when $x = \frac{\pi}{3}$. On putting

$$y = 0$$
 and $x = \frac{\pi}{3}$ in Eq. (ii), we get

$$0 \times \sec^2 \frac{\pi}{3} = \sec \frac{\pi}{3} + C$$

$$\Rightarrow 0 = 2 + C \implies C = -2$$
(1)

On putting the value of C in Eq. (ii), we get

$$y \sec^2 x = \sec x - 2$$

$$\Rightarrow y = \cos x - 2 \cos^2 x$$

which is the required solution of the given differential equation. (1)

14. Solve the following differential equation

$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x; x \neq 0.$$
All India 2014C

$$x\cos\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x \qquad \dots (i)$$

which is a homogeneous differential equation.

On putting
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 in

Eq. (i), we get

$$x \cos v \left[v + x \frac{dv}{dx} \right] = vx \cos v + x$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{x (v \cos v + 1)}{x \cos v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}$$

$$\Rightarrow dv = 1$$

$$\Rightarrow \qquad x \frac{dv}{dx} = \frac{1}{\cos v} \Rightarrow \cos v \, dv = \frac{dx}{x} \tag{1}$$

On integrating both sides, we get

$$\int \cos v \, dv = \int \frac{dx}{x}$$

$$\Rightarrow \qquad \sin v = \log x + C \tag{1}$$

$$\Rightarrow \qquad \sin \left(\frac{y}{x}\right) = \log x + C \left[\because y = vx \Rightarrow v = \frac{y}{x}\right]$$

which is the required solution of given differential equation. (1)

15. If y(x) is a solution of the differential equation

$$\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x \text{ and } y(0) = 1, \text{ then find}$$
the value of $y\left(\frac{\pi}{2}\right)$. Delhi 2014C

$$\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x$$

$$\Rightarrow \frac{1}{1+y}dy = -\frac{\cos x}{2+\sin x}dx \tag{1}$$

Now, on integrating both sides, we get

$$\int \frac{1}{1+y} \, dy = -\int \frac{\cos x}{2+\sin x} \, dx$$

$$\Rightarrow$$
 $\log |1+y| = -\log |2 + \sin x| + \log C$

for
$$\sqrt{\frac{\cos x}{2 + \sin x}} dx$$
, let $2 + \sin x = t$
 $\Rightarrow \cos x dx = dt$,
then $\int \frac{\cos x}{2 + \sin x} dx = \int \frac{dt}{t} = \log t + C$
 $= \log|2 + \sin x| + C$

$$\Rightarrow \log(1+y) + \log(2 + \sin x) = \log C$$

$$\Rightarrow \log (1+y)(2+\sin x) = \log C$$

$$\Rightarrow (1+y)(2+\sin x) = C \qquad \dots (i)$$

Also, given that at x = 0, y(0) = 1

On putting x = 0 and y = 1 in Eq. (i), we get

$$(1+1)(2+\sin 0)=C$$

$$\Rightarrow \qquad C = 4 \tag{1}$$

On putting C = 4 in Eq. (i), we get $(1 + y)(2 + \sin x) = 4$

$$\Rightarrow 1+y=\frac{4}{2+\sin x}$$

$$\Rightarrow \qquad y = \frac{4}{2 + \sin x} - 1$$

$$\Rightarrow \qquad y = \frac{4 - 2 - \sin x}{2 + \sin x}$$

$$\Rightarrow \qquad y = \frac{2 - \sin x}{2 + \sin x} \tag{1}$$

Now, at
$$x = \frac{\pi}{2}$$
, $y\left(\frac{\pi}{2}\right) = \frac{2 - \sin\frac{\pi}{2}}{2 + \sin\frac{\pi}{2}}$

$$\therefore y\left(\frac{\pi}{2}\right) = \frac{1}{2}$$

$$\left[\because \sin\frac{\pi}{2} = 1\right] \quad (1)$$

$$(2)$$
 3 (2)

16. Solve the differential equation

$$x \frac{dy}{dx} + y = x \cdot \cos x + \sin x$$
, given $y \left(\frac{\pi}{2}\right) = 1$.

All India 2014C

Given differential equation is

$$x\frac{dy}{dx} + y = x\cos x + \sin x$$

$$\Rightarrow \frac{dy}{dx} + \frac{y}{x} = \cos x + \frac{\sin x}{x}$$

[dividing on both sides by x]

which is a linear differential equation.

On comparing with the form $\frac{dy}{dx} + Py = Q$,

we get
$$P = \frac{1}{x}$$
 and $Q = \cos x + \frac{\sin x}{x}$

$$\therefore \quad \mathsf{IF} = \mathsf{e}^{\int Pdx} = \mathsf{e}^{\int \frac{1}{x} dx} = \mathsf{e}^{\log x} = x$$

The general solution is given by

$$y \cdot \mathbf{i} \mathbf{F} = \int Q \times \mathbf{i} \mathbf{F} \, dx + C \tag{1}$$

$$\Rightarrow yx = \int x \left(\cos x + \frac{\sin x}{x}\right) dx + C$$

$$\Rightarrow yx = \int (x \cos x + \sin x) \, dx + C$$

$$\Rightarrow xy = \int x \cos x \, dx + \int \sin x \, dx + C$$

$$\Rightarrow xy = x \int \cos x \, dx - \int \left[\frac{d}{dx} (x) \int \cos x \, dx \right] dx + \int \sin x \, dx + C$$

$$\Rightarrow$$
 $xy = x \sin x + \cos x - \cos x + C$

$$\Rightarrow xy = x \sin x + C$$

$$\Rightarrow y = \sin x + C \cdot \frac{1}{x} \qquad ...(i) (1)$$

Also, given that at
$$x = \frac{\pi}{2}$$
; $y = 1$

On putting $x = \frac{\pi}{2}$ and y = 1 in Eq. (i), we get

$$1 = 1 + C \cdot \frac{2}{\pi} \Rightarrow C = 0 \tag{1}$$

On putting the value of C in Eq. (i), we get

$$y = \sin x$$

which is the required solution of given differential equation. (1)

17. Solve the differential equation

$$\frac{dy}{dx} + y \cot x = 2 \cos x$$
, given that $y = 0$, when

$$x=\frac{\pi}{2}$$
.

Foreign 2014

$$\frac{dy}{dx} + y \cot x = 2 \cos x$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q$$

Here, $P = \cot x$ and $Q = 2 \cos x$

$$\therefore \quad \mathsf{IF} = \mathbf{e}^{\int Pdx} = \mathbf{e}^{\int \cot x \, dx} = \mathbf{e}^{\mathsf{logsin}\,x}$$

$$\Rightarrow IF = \sin x \tag{1}$$

The general solution is given by

$$Y \times IF = \int IF \times Q \, dx + C$$

$$\Rightarrow y \sin x = \int 2 \sin x \cos x \, dx + C$$

$$\Rightarrow y \sin x = \int \sin 2x \, dx + C$$

$$\Rightarrow y \sin x = -\frac{\cos 2x}{2} + C \qquad ...(i) \quad (1)$$

Also, given that y = 0, when $x = \frac{\pi}{2}$.

On putting $x = \frac{\pi}{2}$ and y = 0 in Eq. (i), we get

$$0 \sin \frac{\pi}{2} = -\frac{\cos 2\frac{\pi}{2}}{2} + C$$

$$\Rightarrow C - \frac{\cos \pi}{2} = 0 \Rightarrow C + \frac{1}{2} = 0$$

$$\therefore C = -\frac{1}{2}$$
(1)

On putting the value of C in Eq. (i), we get

$$y\sin x = -\cos\frac{2x}{2} - \frac{1}{2}$$

$$\Rightarrow 2y \sin x + \cos 2x + 1 = 0$$
which is the required solution. (1)

- 18. Solve the differential equation $(x^2 yx^2) dy + (y^2 + x^2y^2) dx = 0$, given that y = 1, when x = 1. Foreign 2014
- **Direction** (Q. Nos. 19-22) Solve the following differential equations.

$$(x^2 - yx^2)dy + (y^2 + x^2y^2) dx = 0$$

On dividing both sides by dx, we get

$$(x^2 - yx^2)\frac{dy}{dx} + (y^2 + x^2y^2) = 0$$

$$\Rightarrow x^2 (1-y) \frac{dy}{dx} + y^2 (1+x^2) = 0$$

$$\Rightarrow \qquad -x^2 (1-y) \frac{dy}{dx} = y^2 (1+x^2)$$

$$\Rightarrow x^{2} (y-1) \frac{dy}{dx} = y^{2} (1+x^{2})$$

$$\Rightarrow \frac{y-1}{y^{2}} dy = \frac{1+x^{2}}{x^{2}} dx \qquad (1)$$

On integrating both sides, we get

$$\int \frac{y-1}{y^2} dy = \int \frac{1+x^2}{x^2} dx$$

$$\Rightarrow \frac{1}{2} \int \frac{2y}{y^2} dy - \int \frac{1}{y^2} dy = \int \frac{1}{x^2} dx + \int 1 \cdot dx \quad (1)$$

On putting $y^2 = t \Rightarrow 2y \, dy = dt$ in first integral, we get

$$\frac{1}{2} \int \frac{dt}{t} + \frac{1}{y} = -\frac{1}{x} + x$$

$$\Rightarrow \frac{1}{2} \log|y^2| + \frac{1}{y} = -\frac{1}{x} + x + C \qquad \dots (i)$$

$$[\because t = y^2]$$

Also, given that y = 1, when x = 1.

On putting y = 1 and x = 1 in Eq.(i), we get

$$\frac{1}{2}\log|1| + \frac{1}{1} = \frac{-1}{1} + 1 + C$$

$$\Rightarrow \frac{1}{2}\log|1| + 1 = -1 + 1 + C$$

$$\Rightarrow C = 1 \quad [\because \log 1 = 0] (1)$$

On putting the value of C in Eq. (i), we get

$$\frac{1}{2}\log|y^2| + \frac{1}{y} = -\frac{1}{x} + x + 1$$
which is the required solution. (1)

19.
$$\frac{dy}{dx} + y \sec x = \tan x$$
 All India 2012C; Delhi 2008C

$$\frac{dy}{dx} + y \sec x = \tan x \qquad ...(i)$$

which is a linear differential equation of first order and is of the form

$$\frac{dy}{dx} + Py = Q \qquad ...(ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \sec x \text{ and } Q = \tan x$$
 (1)

$$\therefore \qquad \mathsf{IF} = \mathrm{e}^{\int \sec x \, dx} = \mathrm{e}^{\log|\sec x + \tan x|}$$

$$[\because \int \sec x \, dx = \log|\sec x + \tan x|]$$

$$\Rightarrow IF = \sec x + \tan x \tag{1}$$

The general solution is

$$y \times IF = \int Q \cdot IF dx + C$$

$$y (\sec x + \tan x) = \int \tan x \cdot (\sec x + \tan x) dx$$

$$\Rightarrow$$
 y (sec x + tan x) = \int sec x tan x dx + \int tan²x dx

$$\Rightarrow y (\sec x + \tan x) = \sec x + \int (\sec^2 x - 1) dx$$
 (1)

$$\Rightarrow y (\sec x + \tan x) = (\sec x + \tan x) - x + C$$
$$[\because \int \sec^2 x \, dx = \tan x + C]$$

On dividing both sides by $(\sec x + \tan x)$, we get the required solution as

$$y = 1 - \frac{x}{\sec x + \tan x} + \frac{C}{\sec x + \tan x}$$
 (1)

20.
$$2x^2 \frac{dy}{dx} - 2xy + y^2 = 0$$
 Delhi 2012

$$2x^{2} \frac{dy}{dx} - 2xy + y^{2} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{2xy - y^{2}}{2x^{2}} \qquad ...(i) (1)$$

which is a homogeneous differential equation.

On putting
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 in Eq. (i),

we get

$$v + x \frac{dv}{dx} = \frac{2vx^2 - v^2x^2}{2x^2}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{2v - v^2}{2}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2v - v^2}{2} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2v - v^2 - 2v}{2}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{-v^2}{2}$$

$$\Rightarrow \frac{2dv}{v^2} = -\frac{1}{v}dx$$
(1)

On integrating both sides, we get

$$\int \frac{2dv}{v^2} = \int \frac{-dx}{x} + C$$

$$\Rightarrow 2 \int v^{-2}dv = -\log|x| + C$$

$$\Rightarrow \frac{2v^{-1}}{-1} = -\log|x| + C$$

$$\Rightarrow \frac{-2}{v} = -\log|x| + C$$

$$\Rightarrow \frac{-2x}{y} = -\log|x| + C$$

$$\left[\because y = vx \Rightarrow v = \frac{y}{x}\right]$$

$$\Rightarrow -2x = y(-\log|x| + C)$$

$$\Rightarrow y = \frac{-2x}{-\log|x| + C}$$

which is the required solution.

(1)

21.
$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$
, given that $y = 1$, when $x = 0$. Delhi 2012

$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$

$$\Rightarrow \frac{dy}{dx} = (1 + x^2) + y^2(1 + x^2)$$

$$\Rightarrow \frac{dy}{dx} = (1 + x^2)(1 + y^2)$$

$$\Rightarrow \frac{dy}{dx} = (1 + x^2) dx$$

$$\Rightarrow \frac{dy}{1 + y^2} = (1 + x^2) dx$$

$$(1)$$

On integrating both sides, we get

$$\int \frac{dy}{1+y^2} = \int (1+x^2) dx$$

$$\Rightarrow \tan^{-1} y = x + \frac{x^3}{3} + C \qquad \dots (i)$$

Also, given that y = 0, when x = 2.

On putting x = 0 and y = 1 in Eq. (i), we get

$$tan^{-1}1 = C$$

$$\Rightarrow \tan^{-1}(\tan \pi/4) = C \qquad \left[\because \tan \frac{\pi}{4} = 1 \right]$$

$$\Rightarrow C = \pi/4 \tag{1}$$

On putting the value of C in Eq. (i), we get

$$\tan^{-1} y = x + \frac{x^3}{3} + \frac{\pi}{4}$$

$$\Rightarrow \qquad y = \tan\left(x + \frac{x^3}{3} + \frac{\pi}{4}\right)$$

which is the required solution. (1)

22.
$$x(x^2-1)\frac{dy}{dx} = 1$$
, $y = 0$, when $x = 2$. All India 2012

$$x(x^{2} - 1) \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x(x^{2} - 1)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x(x - 1)(x + 1)}$$

$$[\because a^{2} - b^{2} = (a - b)(a + b)]$$

$$\Rightarrow dy = \frac{dx}{x(x - 1)(x + 1)}$$

On integrating both sides, we get

$$\int dy = \int \frac{dx}{x(x-1)(x+1)} + C$$

$$\Rightarrow$$
 $y = I + C$...(i)

where,
$$I = \int \frac{dx}{x(x-1)(x+1)}$$
 (1)

Let
$$\frac{1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$$

$$\Rightarrow$$
 1 = A (x - 1) (x + 1) + B x(x + 1) + C x(x - 1)

On comparing coefficients of x^2 , xconstant terms from both sides, we get

$$A + B + C = 0 \qquad \dots (ii)$$

$$B - C = 0 \qquad ...(iii)$$

-A = 1and

$$\Rightarrow$$
 $A = -1$

On putting A = -1 in Eq. (ii), we get

$$B + C = 1$$
 ...(iv)

Now, on adding Eqs. (iii) and (iv), we get

$$2B=1 \implies B=\frac{1}{2}$$

On putting $B = \frac{1}{2}$ in Eq. (iii), we get

$$\frac{1}{-}C = 0 \implies C = \frac{1}{2}$$

$$A = -1, B = \frac{1}{2} \text{ and } C = \frac{1}{2},$$
then
$$\frac{1}{x(x-1)(x+1)} = \frac{-1}{x} + \frac{1/2}{x-1} + \frac{1/2}{x+1}$$
 (1)

On integrating both sides w.r.t. x, we get

$$I = \int \frac{1}{x(x-1)(x+1)} dx = \int \frac{-1}{x} dx + \frac{1}{2} \int \frac{dx}{x-1} + \frac{1}{2} \int \frac{dx}{x+1}$$

$$\Rightarrow I = -\log|x| + \frac{1}{2}\log|x - 1| + \frac{1}{2}\log|x + 1|$$

On putting the value of *I* in Eq. (i), we get $y = -\log|x| + \frac{1}{2}\log|x - 1| + \frac{1}{2}\log|x + 1| + C$... (v)

Also, given that y = 0, when x = 2.

On putting y = 0 and x = 2 in Eq. (v), we get

$$0 = -\log 2 + \frac{1}{2}\log 1 + \frac{1}{2}\log 3 + C$$

$$\Rightarrow C = \log 2 - \frac{1}{2} \log 1 - \frac{1}{2} \log 3$$

$$\Rightarrow C = \log 2 - \log \sqrt{3} \quad [\because \log 1 = 0]$$

$$\Rightarrow C = \log \frac{2}{\sqrt{3}} \tag{1}$$

On putting the value of C in Eq. (v), we get

$$y = -\log|x| + \frac{1}{2}\log|x - 1| + \frac{1}{2}\log|x + 1| + \log\frac{2}{\sqrt{3}}$$
 (1)

which is the required solution.

23. Solve the following differential equation
$$\frac{dy}{dx} + y \cot x = 4x \csc x, \text{ given that } y = 0,$$
 when $x = \frac{\pi}{2}$. Delhi 2012C; Foreign 2011

$$\frac{dy}{dx} + y \cot x = 4x \csc x$$

which is a linear differential equation. On comparing with general form of linear differential equation of 1st order

$$\frac{dy}{dx} + Py = Q \text{, we get}$$

$$P = \cot x \text{ and } Q = 4x \operatorname{cosec} x \qquad (1)$$

$$\therefore \qquad \mathsf{IF} = e^{\int Pdx} = e^{\int \cot x \, dx}$$

$$= e^{\log \sin x} = \sin x \qquad [\because e^{\log x} = x]$$

$$\Rightarrow \qquad \mathsf{IF} = \sin x \qquad (1)$$

Now, solution of linear differential equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

On putting IF = $\sin x$ and $Q = 4x \csc x$, we . get

$$y \times \sin x = \int 4x \csc x \cdot \sin x \, dx + C$$

$$\Rightarrow$$
 $y \sin x = \int 4x \cdot \frac{1}{\sin x} \cdot \sin x \, dx + C$

$$\Rightarrow y \sin x = \int 4x \, dx + C$$

$$\Rightarrow$$
 $y \sin x = 2x^2 + C$...(i) (1)

Also, given that y = 0, when $x = \frac{\pi}{2}$.

On putting y = 0 and $x = \frac{\pi}{2}$ in Eq. (i), we get

$$0 = 2 \times \frac{\pi^2}{4} + C \implies C = \frac{-\pi^2}{2}$$

On putting
$$C = -\frac{\pi^2}{2}$$
 in Eq. (i), we get
$$y \sin x = 2x^2 - \frac{\pi^2}{2}$$

$$\Rightarrow y = 2x^2 \operatorname{cosec} x - \frac{\pi^2}{2} \operatorname{cosec} x$$
 (1)

which is the required solution.

24. Solve the following differential equation $(1 + x^2) dy + 2xy dx = \cot x dx$, where $x \ne 0$.

All India 2012C, 2011

Given differential equation is

$$(1+x^2) dy + 2xy dx = \cot x dx \qquad [\because x \neq 0]$$

$$\Rightarrow (1+x^2) dy = (\cot x - 2xy) dx$$

On dividing both sides by $1 + x^2$, we get

$$dy = \frac{\cot x - 2xy}{1 + x^2} dx$$

$$\Rightarrow \frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{\cot x}{1+x^2} \qquad ...(i) \quad (1)$$

which is a linear differential equation of 1st order and is of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{2x}{1+x^2}$$
 and $Q = \frac{\cot x}{1+x^2}$

$$\therefore \qquad \mathsf{IF} = e^{\int \frac{2x}{1+x^2} \, dx}$$

$$=e^{\log|1+x^2|}=1+x^2$$
 (1)

$$\int \text{for } \int \frac{2x}{1+x^2} \, dx, \, \text{put } 1+x^2=t \Rightarrow 2x \, dx=dt$$

$$\int \frac{dt}{t} = \log|t| = \log|1 + x^2| + C$$

Now, solution of linear differential equation is given by

$$y \times IF = \int (Q \times IF)dx + C$$

$$\therefore \quad y(1+x^2) = \int \frac{\cot x}{1+x^2} \times (1+x^2) dx + C$$

$$\Rightarrow \quad y(1+x^2) = \int \cot x dx + C \qquad (1)$$

$$\Rightarrow \quad y(1+x^2) = \log|\sin x| + C$$

$$[\because \int \cot x dx = \log|\sin x| + C]$$

On dividing both sides by $1 + x^2$, we get

$$y = \frac{\log|\sin x|}{1+x^2} + \frac{C}{1+x^2}$$
which is the required solution. (1)

25. Find the particular solution of the differential equation

$$(1 + e^{2x})dy + (1 + y^2)e^x dx = 0$$
, given that $y = 1$,
when $x = 0$. Foreign 2011; All India 2008C

Given differential equation is

$$(1 + e^{2x}) dy + (1 + y^2)e^x dx = 0$$

Above equation may be written as

$$\frac{dy}{1+y^2} = \frac{-e^x}{1+e^{2x}} dx$$
 (1)

On integrating both sides, we get

$$\int \frac{dx}{1+y^2} = -\int \frac{e^x}{1+e^{2x}} dx$$

On putting $e^x = t \Rightarrow e^x dx = dt$ in RHS, we get

$$\tan^{-1} y = -\int \frac{1}{1+t^2} \, dt$$

$$\Rightarrow \tan^{-1} y = -\tan^{-1} t + C$$

⇒
$$tan^{-1}y = -tan^{-1}(e^x) + C$$
 ...(i)
[:: $t = e^x$](1½)

Now, given that y = 1, when x = 0.

On putting above values in Eq. (i), we get

$$\tan^{-1}1 = -\tan^{-1}(e^0) + C$$

$$\Rightarrow \tan^{-1}\left(\tan\frac{\pi}{4}\right) = -\tan^{-1}1 + C \qquad [\because e^0 = 1]$$

$$\Rightarrow \frac{\pi}{4} = -\tan^{-1}\left(\tan\frac{\pi}{4}\right) + C$$

$$\Rightarrow \frac{\pi}{4} = -\frac{\pi}{4} + C$$

$$\Rightarrow \qquad C = \frac{\pi}{4} + \frac{\pi}{4} \quad \Rightarrow \quad C = \frac{\pi}{2}$$

On putting $C = \frac{\pi}{2}$ in Eq. (i), we get

$$\tan^{-1} y = -\tan^{-1} e^x + \frac{\pi}{2}$$

$$\Rightarrow y = \tan\left[\frac{\pi}{2} - \tan^{-1}(e^x)\right] = \cot\left[\tan^{-1}(e^x)\right]$$

$$= \cot \left[\cot^{-1}\left(\frac{1}{e^x}\right)\right] \left[\because \tan^{-1} x = \cot^{-1}\frac{1}{x}\right]$$

$$\Rightarrow$$
 $y = \frac{1}{e^x}$

which is the required solution. (1½)

26. Solve the following differential equation

$$(1 + x^2) \frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}$$
, given that $y = 0$,
when $x = 1$. Foreign 2011

Given differential equation is

$$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$$

On dividing both sides by $(1 + x^2)$, we get

$$\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{1}{(1+x^2)^2} \qquad ...(i)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{2x}{1+x^2} \text{ and } Q = \frac{1}{(1+x^2)^2}$$
 (1)

: IF =
$$e^{\int \frac{2x}{1+x^2} dx} = e^{\log|1+x^2|}$$
 (1)

$$\Rightarrow IF = 1 + x^2 \qquad [\because e^{\log x} = x]$$

$$\left[:: \int \frac{2x}{1+x^2} dx, \text{ put } 1+x^2+t \Rightarrow 2x dx = dt \right]$$

$$:: \int \frac{dt}{t} = \log|t| = \log|1+x^2|$$

Now, solution of linear equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$
 ...(iii)

$$\therefore y(1+x^2) = \int \frac{1}{(1+x^2)^2} \times (1+x^2) dx + C$$

$$\Rightarrow y(1+x^2) = \int \frac{1}{1+x^2} dx + C$$

$$\Rightarrow$$
 $y(1+x^2) = \tan^{-1} x + C$...(iv) (1)

$$\left[\because \int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C \right]$$

Also, given that y = 0, when x = 1.

On putting y = 0 and x = 1 in Eq. (iv), we get

$$0 = \tan^{-1} 1 + C$$

$$\Rightarrow 0 = \tan^{-1} \left(\tan \frac{\pi}{4} \right) + C \qquad \left[\because 1 = \tan \frac{\pi}{4} \right]$$

$$\Rightarrow \qquad 0 = \frac{\pi}{4} + C \quad \Rightarrow \quad C = \frac{-\pi}{4}$$

On putting $C = \frac{-\pi}{4}$ in Eq. (iv), we get

$$y (1 + x^{2}) = \tan^{-1} x - \frac{\pi}{4}$$

$$\Rightarrow \qquad y = \frac{\tan^{-1} x}{1 + x^{2}} - \frac{\pi}{4(1 + x^{2})}$$
 (1)

which is the required solution.

27. Solve the following differential equation $xdy - ydx = \sqrt{x^2 + v^2}dx.$ All India 2011

Given differential equation is

$$x dy - y dx = \sqrt{x^2 + y^2} dx$$

$$\Rightarrow (y + \sqrt{x^2 + y^2}) dx = x dy$$

$$\Rightarrow \frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x} \dots (i) (1)$$

which is a homogeneous differential equation because each term have same degree.

On putting
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (1)

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{vx + \sqrt{x^2 + v^2x^2}}{x} = \frac{vx + x\sqrt{1 + v^2}}{x}$$

$$\Rightarrow$$
 $v + x \frac{dv}{dx} = v + \sqrt{1 + v^2}$

$$\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2} \Rightarrow \frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}$$

On integrating both sides, we get

$$\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}$$

$$\Rightarrow \log|v + \sqrt{1 + v^2}| = \log|x| + C$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \log|x + \sqrt{x^2 + a^2}|$$

and
$$\int \frac{dx}{x} = \log|x| + C$$
 (1)

$$\Rightarrow \log \left| \frac{y}{y} + \sqrt{1 + \frac{y^2}{2}} \right| = \log |x| + C \quad \because y = vx \\ y$$

$$|x \quad V \quad x^{2}| \qquad \left[\therefore V = \frac{c}{x} \right]$$

$$\Rightarrow \log \left| \frac{y + \sqrt{x^{2} + y^{2}}}{x} \right| - \log |x| = C$$

$$\Rightarrow \log \frac{\left| \frac{y + \sqrt{x^{2} + y^{2}}}{x} \right|}{x} = C$$

$$\left[\because \log m - \log n = \log \left(\frac{m}{n} \right) \right]$$

$$\Rightarrow \frac{y + \sqrt{x^{2} + y^{2}}}{x^{2}} = e^{C} \left[\because \text{if } \log y = x, \\ \text{then } y = e^{x} \right]$$

$$\Rightarrow y + \sqrt{x^{2} + y^{2}} = x^{2} \cdot e^{C}$$

$$\therefore y + \sqrt{x^{2} + y^{2}} = Ax^{2} \qquad \text{[where, } A = e^{C} \text{](1)}$$
which is the required solution.

28. Solve the following differential equation $(y+3x^2)\frac{dx}{dv}=x.$ All India 2011

Given differential equation is

$$(y + 3x^{2}) \frac{dx}{dy} = x \implies \frac{dy}{dx} = \frac{y}{x} + 3x$$

$$\Rightarrow \frac{dy}{dx} - \frac{y}{x} = 3x \qquad ...(i) (1)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{-1}{x} \text{ and } Q = 3x \tag{1}$$

$$\therefore \qquad \mathsf{IF} = \mathsf{e}^{\int -\frac{1}{x} dx} = \mathsf{e}^{-\log|x|} = \mathsf{e}^{\log x^{-1}} = x^{-1}$$

$$\Rightarrow \qquad \mathsf{IF} = x^{-1} = \frac{1}{x}$$

Now, solution of linear differential equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$\therefore \qquad y \times \frac{1}{x} = \int 3x \times \frac{1}{x} dx \qquad (1)$$

$$\Rightarrow \qquad \frac{y}{x} = \int 3 dx \Rightarrow \frac{y}{x} = 3x + C$$

$$\Rightarrow \qquad y = 3x^2 + Cx$$

which is the required solution. (1)

29. Solve the following differential equation $xdy - (y + 2x^2) dx = 0$. All India 2011

$$x dy - (y + 2x^{2}) dx = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y + 2x^{2}}{x}$$

$$\Rightarrow \frac{dy}{dx} - \frac{y}{x} = 2x \qquad ...(i) (1)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad ...(ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{-1}{x} \text{ and } Q = 2x \tag{1}$$

$$\therefore \qquad \mathsf{IF} = \mathsf{e}^{\int -\frac{1}{x} \, dx} = \mathsf{e}^{-\log|x|} = \mathsf{x}^{-1} = \frac{1}{\mathsf{x}} \tag{1}$$

Now, solution of linear differential equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$\therefore \frac{y}{x} = \int (2x \times \frac{1}{x}) dx + C$$

$$\Rightarrow \frac{y}{x} = \int 2dx + C \Rightarrow \frac{y}{x} = 2x + C$$

$$\Rightarrow y = 2x^2 + Cx$$

which is the required solution. (1)

30. Solve the following differential equation $xdy + (y - x^3) dx = 0$. All India 2011

$$x\,dy + (y - x^3)\,dx = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{x^3 - y}{x}$$

$$\Rightarrow \frac{dy}{dx} = x^2 - \frac{y}{x}$$

$$\Rightarrow \frac{dy}{dx} + \frac{y}{x} = x^2 \qquad ...(i) \quad (1)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{1}{x} \text{ and } Q = x^2$$
 (1)

$$\therefore \qquad \mathsf{IF} = \mathsf{e}^{\int \frac{1}{x} dx} = \mathsf{e}^{\log|x|} = x \qquad \qquad \textbf{(1)}$$

Solution of linear differential equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$y \times x = \int x^2 \times x dx + C$$

$$\Rightarrow yx = \int x^3 dx + C$$

$$\Rightarrow yx = \frac{x^4}{4} + C \Rightarrow y = \frac{x^3}{4} + \frac{C}{x}$$
which is the required solution.

31. Solve the following differential equation $e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$. Delhi 2011

(1)

$$e^{x} \tan y \, dx + (1 - e^{x}) \sec^{2} y \, dy = 0$$

$$\Rightarrow \frac{e^{x}}{e^{x} - 1} dx = \frac{\sec^{2} y}{\tan y} dy$$
 (1)

On integrating both sides, we get

$$\int \frac{e^x}{e^x - 1} dx = \int \frac{\sec^2 y}{\tan y} \, dy$$

On putting $e^x - 1 = t$ and $\tan y = z$

$$\Rightarrow$$
 $e^x dx = dt$ and $sec^2 y dy = dz$

$$\therefore \qquad \int \frac{dt}{t} = \int \frac{dz}{z} \tag{1}$$

$$\Rightarrow \log|t| = \log|z| + \log C \left[:: \int \frac{1}{x} dx = \log|x|\right]$$

$$\Rightarrow \log |e^x - 1| = \log |\tan y| + \log C$$

$$\Rightarrow \log |e^x - 1| = \log |C \cdot \tan y|$$

[: $\log m + \log n = \log mn$]

$$\Rightarrow \qquad e^x - 1 = C \tan y \tag{1}$$

$$\Rightarrow \tan y = \frac{e^x - 1}{C} \Rightarrow y = \tan^{-1} \left(\frac{e^x - 1}{C} \right)$$

which is the required solution. (1)

32. Solve the following differential equation

$$(1 + y^2) (1 + \log x) dx + xdy = 0.$$
 Delhi 2011

$$(1+y^{2}) (1 + \log x) dx + x dy = 0$$

$$\Rightarrow \frac{1 + \log x}{x} dx = \frac{-dy}{1 + y^{2}}$$
(1)

On integrating both sides, we get

$$\int \frac{1 + \log x}{x} dx = -\int \frac{dy}{1 + y^2}$$

$$\Rightarrow \int \frac{1}{x} dx + \int \frac{\log x}{x} dx = -\int \frac{dy}{1 + y^2}$$

$$\Rightarrow \log|x| + \frac{(\log x)^2}{2} + C = -\tan^{-1} y$$

$$\left[\text{for } \int \frac{\log x}{x} dx \Rightarrow \text{put } \log x = t \Rightarrow \frac{1}{x} dx = dt \right]$$

$$\therefore \int t dt = \frac{t^2}{2} + C = \frac{(\log x)^2}{2} + C \right]$$

$$\Rightarrow \tan^{-1} y = -\left[\log|x| + \frac{(\log x)^2}{2} + C \right]$$

$$\Rightarrow y = \tan \left[-\log|x| - \frac{(\log x)^2}{2} - C \right]$$

which is the required solution.

33. Solve the following differential equation

$$\left[x\sin^2\left(\frac{y}{x}\right) - y\right]dx + xdy = 0.$$
 Delhi 2011C

 $(1\frac{1}{2})$

$$\left[x\sin^2\left(\frac{y}{x}\right) - y\right]dx + x\,dy = 0$$

which is a homogeneous differential equation.

This equation can be written as

$$\begin{bmatrix} x \sin^2\left(\frac{y}{x}\right) - y \end{bmatrix} dx = -x dy$$

$$\Rightarrow \frac{dy}{dx} = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x} ...(i)$$
On putting $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ in Eq. (i), we get (1)

$$v + x \frac{dv}{dx} = \frac{vx - x \sin^2\left(\frac{vx}{x}\right)}{x} = v - \sin^2 v$$

$$\Rightarrow \qquad x \frac{dv}{dx} = -\sin^2 v$$

$$\Rightarrow \qquad \frac{dv}{\sin^2 v} = -\frac{dx}{x} \tag{1}$$

On integrating both sides, we get

Similarly both sides, we get
$$\int \frac{dv}{\sin^2 v} = -\int \frac{dx}{x}$$

$$\Rightarrow \int \csc^2 v \, dv = -\int \frac{dx}{x} \left[\because \frac{1}{\sin^2 v} = \csc^2 v \right]$$

$$\Rightarrow -\cot v = -\log x + C$$

$$\left[\because \int \csc^2 v \, dv = -\cot v + C \right] \text{ (1)}$$

$$\Rightarrow -\cot \left(\frac{y}{x} \right) = -\log x + C \left[\because y = vx \therefore v = \frac{y}{x} \right]$$

$$\Rightarrow \cot \left(\frac{y}{x} \right) = \log x - C$$

$$\Rightarrow \frac{y}{x} = \cot^{-1}(\log x - C)$$

$$\Rightarrow y = x \cdot \cot^{-1}(\log x - C)$$

which is the required solution.

34. Solve the following differential equation

$$x\frac{dy}{dx} + y - x + xy \cot x = 0, x \neq 0.$$
 Delhi 2011C

$$x\frac{dy}{dx} + y - x + xy \cot x = 0, x \neq 0$$

Above equation can be written as

$$x\frac{dy}{dx} + y(1+x\cot x) = x$$

On dividing both sides by x, we get

$$\frac{dy}{dx} + y \left(\frac{1 + x \cot x}{x} \right) = 1$$

$$\Rightarrow \frac{dy}{dx} + y\left(\frac{1}{x} + \cot x\right) = 1 \qquad ...(i) \quad (1)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{1}{x} + \cot x$$
 and $Q = 1$

$$\therefore \quad \mathsf{IF} = e^{\int Pdx} = e^{\int \left(\frac{1}{x} + \cot x\right) dx} = e^{\log|x| + \log\sin x}$$

$$\left[\because \int \frac{1}{x} dx = \log|x| \text{ and } \int \cot x \, dx = \log|\sin x|\right]$$

$$= e^{\log|x \sin x|}$$

$$[\because \log m + \log n = \log mn]$$

$$\Rightarrow \qquad \mathsf{IF} = x \sin x \tag{1/2}$$

$$\Rightarrow IF = x \sin x$$

$$y \times IF = \int (Q \times IF) dx + C$$
(1/2)

$$y \times x \sin x = \int 1 \times x \sin x \, dx + C$$

$$\Rightarrow$$
 $y x \sin x = \int x \sin x \, dx + C$

$$\Rightarrow y x \sin x = x \int \sin x \, dx$$

$$-\int \left(\frac{d}{dx}(x)\cdot \int \sin x\,dx\right)dx + C$$

[using integration by parts in $\int x \sin x \, dx$]

$$\Rightarrow y \times \sin x = -x \cos x - \int 1(-\cos x) \, dx + C$$
 (1)

$$\Rightarrow$$
 $y \times \sin x = -x \cos x + \int \cos x \, dx + C$

$$\Rightarrow$$
 $\dot{y} x \sin x = -x \cos x + \sin x + C$

On dividing both sides by $x \sin x$, we get

$$y = \frac{-x\cos x + \sin x + C}{x\sin x}$$

$$\Rightarrow \qquad y = -\cot x + \frac{1}{x} + \frac{C}{x \sin x}$$

which is the required solution.

35. Show that the following differential equation is homogeneous and then solve it.

$$y dx + x \log \left(\frac{y}{x}\right) dy - 2x dy = 0$$

HOTS; All India 2011C

(1)

Let the value of $\frac{dy}{dx}$ be f(x, y). Now, put $x = \lambda x$ $y = \lambda y$ and verify $f(\lambda x, \lambda y) = \lambda^n f(x, y) n \in \mathbb{Z}$. If above equation is satisfied, then given equation is said to be homogeneous equation. Then, we use the substitution y = vx to solve the equation.

Given differential equation is

$$y dx + x \log \left(\frac{y}{x}\right) dy - 2x dy = 0$$

$$\Rightarrow y dx = \left[2x - x \log \left(\frac{y}{x}\right)\right] dy$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{2x - x \log \left(\frac{y}{x}\right)} \qquad ...(i) \quad (1/2)$$
Now, let $f(x, y) = \frac{y}{2x - x \log \left(\frac{y}{x}\right)}$

On replace x by λx and y by λy both sides, we get

$$f(\lambda x, \lambda y) = \frac{\lambda y}{2\lambda x - \lambda x \log\left(\frac{\lambda y}{\lambda x}\right)}$$

$$= \frac{\lambda y}{\lambda \left[2x - x \log\left(\frac{y}{x}\right)\right]}$$

$$\Rightarrow f(\lambda x, \lambda y) = \lambda^0 \frac{y}{2x - x \log\left(\frac{y}{x}\right)} = \lambda^0 f(x, y)$$

So, given differential equation is homogeneous.

(1/2)

dv

dv

On putting
$$y = vx \implies \frac{d}{dx} = v + x \frac{d}{dx}$$

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{vx}{2x - x \log\left(\frac{vx}{x}\right)} = \frac{v}{2 - \log v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v}{2 - \log v} - v = \frac{v - 2v + v \log v}{2 - \log v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{-v + v \log v}{2 - \log v}$$

$$\Rightarrow \frac{2 - \log v}{v \log v - v} dv = \frac{dx}{x}$$
 (1)

On integrating both sides, we get

$$\int \frac{2 - \log v}{v(\log v - 1)} dv = \int \frac{dx}{x}$$

On putting $\log v = t \Rightarrow \frac{1}{v} dv = dt$

Then,
$$\int \frac{2-t}{t-1} dt = \log|x| + C$$

$$\Rightarrow \int \left(\frac{1}{t-1} - 1\right) dt = \log|x| + C \tag{1}$$

$$\therefore t-1)2-t(-1)$$

$$1-t$$

$$-+$$

$$1$$
and use
$$\int \left(\frac{R}{D}+Q\right)dt$$

$$\Rightarrow$$
 $\log |t-1|-t = \log |x|+C$

$$\Rightarrow \log |\log v - 1| - \log v = \log |x| + C$$

$$\Rightarrow \log \left| \frac{\log v - 1}{v} \right| = \log |x| + C$$

$$\left[\because \log m - \log n = \log \left(\frac{m}{n} \right) \right]$$

$$\Rightarrow \log \left| \frac{\log v - 1}{v} \right| - \log |x| = C$$

$$\Rightarrow \log \left| \frac{\log v - 1}{vx} \right| = C$$

$$\therefore \log \left| \frac{\log \frac{y}{x} - 1}{y} \right| = C$$

$$\left[\because y = vx \Rightarrow v = \frac{y}{x} \right]$$

which is the required solution.

(1)

36. Solve the following differential equation $\left(x\cos\frac{y}{x} + y\sin\frac{y}{x}\right)y - \left(y\sin\frac{y}{x} - x\cos\frac{y}{x}\right)x\frac{dy}{dx} = 0.$ All India 2010C

Firstly, convert the given differential equation in homogeneous and then put y = vx.

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

Further, separate the variables and integrate it.

Given differential equation is

$$\left(x\cos\frac{y}{x} + y\sin\frac{y}{x}\right) \cdot y$$

$$-\left(y\sin\frac{y}{x} - x\cos\frac{y}{x}\right) \cdot x\frac{dy}{dx} = 0$$

which is a homogeneous differential equation. It can be written as

$$\left(x\cos\frac{y}{x} + y\sin\frac{y}{x}\right) \cdot y$$

$$= \left(y\sin\frac{y}{x} - x\cos\frac{y}{x}\right) \cdot x\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\left[x\cos\left(\frac{y}{x}\right) + y\sin\left(\frac{y}{x}\right)\right] \cdot y}{\left(y\sin\frac{y}{x} - x\cos\frac{y}{x}\right) \cdot x} \dots (i)$$

On putting

$$y = vx$$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \text{ in Eq. (i), we get}$$

$$v + x \frac{dv}{dx} = \frac{(x \cos v + vx \sin v) \cdot vx}{(vx \sin v - x \cos v) \cdot x}$$

$$dv \quad v \cos v + v^2 \sin v$$
(1)

$$\Rightarrow v + x \frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \cos v + v^2 \sin v}{v \sin v - \cos v} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \cos v + v^2 \sin v - v^2 \sin v + v \cos v}{v \sin v - \cos v}$$

$$\Rightarrow \qquad x \frac{dv}{dx} = \frac{2v \cos v}{v \sin v - \cos v}$$

$$\Rightarrow \frac{v \sin v - \cos v}{v \cos v} dv = 2 \frac{dx}{x}$$

On integrating both sides, we get

$$\int \frac{v \sin v - \cos v}{v \cos v} \, dv = 2 \int \frac{dx}{x}$$

$$\Rightarrow \int \left(\frac{v \sin v}{v \cos v} - \frac{\cos v}{v \cos v} \right) dv = 2 \int \frac{dx}{x}$$

$$\Rightarrow \int \left(\tan v - \frac{1}{v} \right) dv = 2 \int \frac{dx}{x}$$

$$\Rightarrow \log|\sec v| - \log|v| = 2\log|x| + C$$
 (1)

$$\left[\because \int \tan v \, dv = \log|\sec v| \text{ and } \int \frac{1}{x} \, dx = \log|x| \right]$$

$$\Rightarrow \log |\sec v| - \log |v| - 2\log |x| = C$$

$$\Rightarrow$$
 $\log |\sec v| - [\log |v| + \log |x|^2 = C$

$$[: \log m^n = n \log m]$$

$$\Rightarrow \log |\sec v| - \log |vx^2| = C$$

$$[: \log m + \log n = \log mn]$$

$$\Rightarrow \log \left| \frac{\sec v}{vx^2} \right| = C$$

$$\left[\because \log m - \log n = \log \left(\frac{m}{n}\right)\right]$$

$$\Rightarrow \log \left| \frac{\sec \frac{y}{x}}{\frac{y}{x} \cdot x^2} \right| = C \qquad \left[\because y = vx \\ \therefore v = \frac{y}{x} \right]$$

$$\Rightarrow \log \left| \frac{\sec \frac{y}{x}}{xy} \right| = C$$

which is the required solution

(1)

37. Solve the following differential equation

$$xy \log\left(\frac{y}{x}\right) dx + \left[y^2 - x^2 \log\left(\frac{y}{x}\right)\right] dy = 0.$$
Delhi 2010C

Given differential equation is

$$xy\log\left(\frac{y}{x}\right)dx + \left[y^2 - x^2\log\left(\frac{y}{x}\right)\right]dy = 0$$

which homogeneous is differential a equation. This equation can be written as

$$xy \log \left(\frac{y}{x}\right) dx = \left[x^2 \log \left(\frac{y}{x}\right) - y^2\right] dy$$

$$\Rightarrow \frac{dy}{dx} = \frac{xy \log \left(\frac{y}{x}\right)}{x^2 \log \left(\frac{y}{x}\right) - y^2} \dots (i)$$

Now, put
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (1)

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{vx^2 \log\left(\frac{vx}{x}\right)}{x^2 \log\left(\frac{vx}{x}\right) - v^2 x^2} = \frac{v \log v}{\log v - v^2}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \log v}{\log v - v^2} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \log v - v \log v + v^3}{\log v - v^2} = \frac{v^3}{\log v - v^2}$$

$$\Rightarrow \frac{\log v - v^2}{v^3} dv = \frac{dx}{x}$$
 (1)

On integrating both sides, we get

$$\int \frac{\log v - v^2}{v^3} \, dv = \int \frac{dx}{x}$$

$$\int \frac{\log v}{v^3} \, dv = \int \frac{dx}{x} \, dx$$

$$\Rightarrow \int \frac{ds}{v^3} dv - \int \frac{dv}{v} dv = \int \frac{dv}{x}$$

$$\Rightarrow \int v_1^{-3} \log v \, dv - \log |v| = \log |x| + C$$

Using integration by parts, we get

$$\log v \int v^{-3} dv - \int \left[\frac{d}{dv} (\log v) \cdot \int v^{-3} dv \right] dv$$
$$= \log |v| + \log |x| + C$$

$$\Rightarrow \frac{v^{-2}}{-2} \log v - \int \frac{1}{v} \frac{v^{-2}}{(-2)} dv = \log |v| + \log |x| + C$$

$$\Rightarrow \frac{-1}{2v^2}\log v + \frac{1}{2}\int v^{-3}dv = \log|v| + \log|x| + C$$

$$\Rightarrow \frac{-1}{2v^2} \log v + \frac{1}{2} \cdot \frac{v^{-2}}{(-2)} = \log|v| + \log|x| + C$$

$$\left[\because \int x^n dx = \frac{x^{n+1}}{n+1} + C\right]$$

$$\Rightarrow \frac{-1}{2v^2}\log v - \frac{1}{4v^2} = \log|vx| + C \tag{1}$$

$$[\because \log m + \log n = \log mn]$$

$$\Rightarrow \frac{-1}{2} \cdot \frac{x^2}{y^2} \log \left(\frac{y}{x} \right) - \frac{1}{4} \cdot \frac{x^2}{y^2} = \log \left| \frac{y}{x} \cdot x \right| + C$$

$$\left[\because y = vx \Rightarrow v = \frac{y}{x} \right]$$

$$\Rightarrow \frac{-x^2}{2y^2} \log \left(\frac{y}{x} \right) - \frac{x^2}{4y^2} = \log |y| + C$$

$$\Rightarrow \frac{-x^2}{y^2} \left[\frac{\log \left(\frac{y}{x} \right)}{2} + \frac{1}{4} \right] = \log |y| + C$$

$$\Rightarrow \frac{x^2}{4y^2} \left[2 \log \left(\frac{y}{x} \right) + 1 \right] + \log |y| = -C$$

$$\Rightarrow x^2 \left[2 \log \left(\frac{y}{x} \right) + 1 \right] + 4y^2 \log |y| = 4y^2 k$$
[where, $k = -C$] (1)

38. Solve the following differential equation

which is the required solution.

$$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$
. All India 2010, 2008

$$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$

On dividing both sides by $(x^{2^{n}} + 1)$, we get

$$\frac{dy}{dx} + \frac{2xy}{x^2 + 1} = \frac{\sqrt{x^2 + 4}}{x^2 + 1} \qquad \dots (i)$$

which is a linear differential equation of the

form
$$\frac{dy}{dx} + Py = Q \qquad ...(ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{2x}{x^2 + 1}$$
 and $Q = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$

$$\therefore \qquad \mathsf{IF} = \mathsf{e}^{\int \frac{2\mathsf{x}}{\mathsf{x}^2 + 1} d\mathsf{x}} = \mathsf{e}^{\mathsf{log}|\mathsf{x}^2 + 1|}$$

$$\Rightarrow \qquad \mathsf{IF} = x^2 + 1 \qquad \qquad [\because e^{\log x} = x] \ \textbf{(1)}$$

$$\left[\because \int \frac{2x}{x^2 + 1} dx \Rightarrow \text{put } x^2 + 1 = t \implies 2x \, dx = dt\right]$$

$$\therefore \int \frac{dt}{t} = \log|t| = \log|x^2 + 1|$$

Now, solution of this equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$
 (1)

$$\therefore y(x^2+1) = \int (x^2+1) \cdot \frac{\sqrt{x^2+4}}{x^2+1} dx \quad (1)$$

$$\Rightarrow y(x^2 + 1) = \int \sqrt{x^2 + 4} \, dx$$

$$\Rightarrow y(x^2 + 1) = \int \sqrt{x^2 + (2)^2} \, dx$$

Now, we know that

$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2}$$

$$+ \frac{a^2}{2} \log|x + \sqrt{x^2 + a^2}| + C$$

$$\therefore y(x^2 + 1) = \frac{x}{2} \sqrt{x^2 + 4}$$

$$+ \frac{4}{2} \log|x + \sqrt{x^2 + 4}| + C$$

$$\Rightarrow y(x^2 + 1) = \frac{x}{2} \sqrt{x^2 + 4}$$

$$+ 2 \log|x + \sqrt{x^2 + 4}| + C$$

which is the required solution.

39. Solve the following differential equation

$$(x^3 + x^2 + x + 1) \frac{dy}{dx} = 2x^2 + x$$
. HOTS; All India 2010

Firstly, divide given equation by $x^3 + x^2 + x + 1$, then it becomes a variable separable type differential equation and then solve it.

Given differential equation is

$$(x^3 + x^2 + x + 1) \frac{dy}{dx} = 2x^2 + x$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x^2 + x}{x^3 + x^2 + x + 1}$$

It is a variable separable type differential equation.

$$dy = \frac{2x^2 + x}{x^3 + x^2 + x + 1} dx$$

On integrating both sides, we get

$$\int dy = \int \frac{2x^2 + x}{x^3 + x^2 + x + 1} dx$$

$$\Rightarrow \qquad y = \int \frac{2x^2 + x}{x^2(x+1) + 1(x+1)} dx$$

$$= \int \frac{2x^2 + x}{(x+1)(x^2 + 1)} dx$$

$$y = I \qquad ...(i) (1)$$
where, $I = \int \frac{2x^2 + x}{(x+1)(x^2 + 1)} dx$

Using partial fractions, we get

$$\frac{2x^2 + x}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 + 1} \qquad ...(ii)$$

$$\Rightarrow \frac{2x^2 + x}{(x+1)(x^2+1)} = \frac{A(x^2+1) + (Bx+C)(x+1)}{(x+1)(x^2+1)}$$

$$\Rightarrow$$
 2x² + x = A(x² + 1) + (Bx + C) (x + 1)

Now, comparing coefficients of x^2 , x and

constant term from both sides, we get

$$A + B = 2 \qquad \dots (iii)$$

$$B+C=1 \qquad ...(iv)$$

and

$$A + C = 0 \qquad \dots (v)$$

On subtracting Eq. (iv) from Eq. (iii), we get

$$A - C = 1 \qquad \dots (vi)$$

On adding Eqs. (v) and (vi), we get

$$2A=1 \implies A=\frac{1}{2}$$

On putting $A = \frac{1}{2}$ in Eq. (iii), we get

$$\frac{1}{2} + B = 2 \quad \Rightarrow \quad B = 2 - \frac{1}{2} = \frac{3}{2}$$

On putting $B = \frac{3}{2}$ in Eq. (iv), we get

$$\frac{3}{2} + C = 1 \quad \Rightarrow \quad C = 1 - \frac{3}{2}$$

$$C = \frac{-1}{2}$$
(1)

On substituting the values of *A*, *B* and *C* in Eq. (ii), we get

$$\frac{2x^2 + x}{(x+1)(x^2+1)} = \frac{1/2}{x+1} + \frac{\frac{3}{2}x - \frac{1}{2}}{x^2+1}$$

On integrating both sides, we get

$$I = \int \frac{2x^2 + x}{(x+1)(x^2 + 1)} dx = \frac{1}{2} \int \frac{dx}{x+1} + \frac{3}{2} \int \frac{x}{x^2 + 1} dx - \frac{1}{2} \int \frac{dx}{x^2 + 1}$$

$$\Rightarrow I = \frac{1}{2} \log|x+1| + \frac{3}{4} \log|x^2+1| - \frac{1}{2} \tan^{-1} x + C$$
 (1)

$$\int : \int \frac{x}{x^2 + 1} dx \Rightarrow \text{put } x^2 + 1 = t \Rightarrow 2x dx = dt$$

$$\Rightarrow xdx = \frac{dt}{2}, \text{ then } \int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \log t = \frac{1}{2} \log |x^2 + 1| + C$$

On putting above value of I in Eq. (i), we get

$$y = \frac{1}{2}\log|x+1| + \frac{3}{4}\log|x^2+1| - \frac{1}{2}\tan^{-1}x + C$$

(1)

which is the required solution.

40. Solve the following differential equation $\sqrt{1 + x^2 + y^2 + x^2y^2} + xy \frac{dy}{dx} = 0.$ All India 2010

Given differential equation is

$$\sqrt{1+x^2+y^2+x^2y^2} + xy\frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \sqrt{(1+x^2)+y^2(1+x^2)} = -xy\frac{dy}{dx}$$

$$\Rightarrow \qquad \sqrt{(1+x^2)(1+y^2)} = -xy\frac{dy}{dx}$$

$$\Rightarrow \qquad \sqrt{1+x^2}\cdot\sqrt{1+y^2} = -xy\frac{dy}{dx}$$

$$\Rightarrow \qquad \sqrt{1+x^2}\cdot\sqrt{1+y^2} = -xy\frac{dy}{dx}$$

$$\Rightarrow \qquad \frac{y_4}{\sqrt{1+y^2}}dy = -\frac{\sqrt{1+x^2}}{x}dx \quad (1)$$

On integrating both sides, we get

$$\int \frac{y}{\sqrt{1+y^2}} \, dy = -\int \frac{\sqrt{1+x^2}}{x^2} \cdot x \, dx$$

On putting $1 + y^2 = t$ and $1 + x^2 = u^2$

$$\Rightarrow$$
 2y dy = dt and 2x dx = 2u du

$$\Rightarrow y dy = \frac{dt}{2} \text{ and } x dx = u du$$
 (1)

$$\therefore \frac{1}{2} \int \frac{dt}{\sqrt{t}} = -\int \frac{u}{u^2 - 1} \cdot u \, du$$

$$\Rightarrow \frac{1}{1} \int t^{-1/2} dt = -\int \frac{u^2}{1} du$$

$$\Rightarrow \frac{1}{2} \frac{t^{1/2}}{1/2} = -\int \frac{(u^2 - 1 + 1)}{u^2 - 1} du \qquad (1)$$

$$\Rightarrow t^{1/2} = -\int \frac{u^2 - 1}{u^2 - 1} du - \int \frac{1}{u^2 - 1} du$$

$$\Rightarrow \sqrt{1 + y^2} = -\int du - \int \frac{1}{u^2 - (1)^2} du$$

$$[\because 1 + y^2 = t]$$

$$\Rightarrow \sqrt{1 + y^2} = -u - \frac{1}{2} \log \left| \frac{u - 1}{u + 1} \right| + C$$

$$\left[\because \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \right]$$

$$\Rightarrow \sqrt{1 + y^2} = -\sqrt{1 + x^2} - \frac{1}{2} \log \left| \frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1} \right| + C$$
which is the required solution. (1)

41. Find the particular solution of the differential equation satisfying the given condition $x^2dy + (xy + y^2) dx = 0$, when y(1) = 1.

Delhi 2010

Given differential equation is

$$x^2dy + (xy + y^2) dx = 0$$

Since, degree of each term is same, so the above equation is a homogeneous equation. This equation can be written as

$$x^{2}dy = -(xy + y^{2}) dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(xy + y^{2})}{x^{2}} \qquad \dots (i)$$

On putting y = vx

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \tag{1}$$

in Eq (i), we get

$$v + x \frac{dv}{dv} = \frac{-(vx^2 + v^2x^2)}{v^2} = -(v + v^2)$$

$$\Rightarrow x \frac{dv}{dx} = -v - v^2 - v$$

$$\Rightarrow x \frac{dv}{dx} = -v^2 - 2v$$

$$\Rightarrow \frac{dv}{v^2 + 2v} = \frac{-dx}{x}$$
(1)

On integrating both sides, we get
$$\int \frac{dv}{v^2 + 2v} = -\int \frac{dx}{x}$$

$$\Rightarrow \int \frac{dv}{v^2 + 2v + 1 - 1} = -\int \frac{dx}{x}$$

$$\Rightarrow \int \frac{dv}{(v+1)^2 - (1)^2} = -\int \frac{dx}{x}$$

$$\Rightarrow \frac{1}{2} \log \left| \frac{v+1-1}{v+1+1} \right| = -\log |x| + C$$

$$\left[\because \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + C \right]$$

$$\Rightarrow \frac{1}{2} \log \left| \frac{v}{v+2} \right| = -\log |x| + C$$

$$\Rightarrow \frac{1}{2} \log \left| \frac{y}{x+2} \right| = -\log |x| + C$$

$$\therefore v = \frac{y}{x}$$

$$\Rightarrow \frac{1}{2} \log \left| \frac{y}{v+2x} \right| = -\log |x| + C \quad ...(ii)$$

Also, given that y = 0 at x = 1, y = 1. On putting x = y = 1 in Eq. (ii), we get

$$\therefore \frac{1}{2}\log\left|\frac{1}{1+2}\right| = -\log 1 + C$$

$$\Rightarrow \frac{1}{2} \log \left| \frac{1}{3} \right| = -\log 1 + C$$

$$\Rightarrow C = \frac{1}{2} \log \frac{1}{3} \quad [\because \log 1 = 0] \quad (1)$$

On putting the value of C in Eq. (ii), we get

$$\frac{1}{2}\log\left|\frac{y}{y+2x}\right| = -\log|x| + \frac{1}{2}\log\frac{1}{3}$$

$$\Rightarrow \log \left| \frac{y}{y + 2x} \right| = -2 \log |x| + \log \frac{1}{3}$$

$$\Rightarrow \log \frac{y}{y+2x} = \log x^{-2} + \log \frac{1}{3}$$

[: $n \log m = \log m^n$]

$$\Rightarrow \log \frac{y}{y+2x} = \log \frac{1}{x^2} + \log \frac{1}{3}$$

$$\Rightarrow \log\left(\frac{y}{y+2x}\right) = \log\frac{1}{3x^2}$$

[: $\log m + \log n = \log mn$]

$$\Rightarrow \frac{y}{y+2x} = \frac{1}{3x^2}$$

$$\Rightarrow y \cdot 3x^2 = y + 2x$$

$$\Rightarrow y(1-3x^2) = -2x$$

$$\therefore \qquad y = \frac{2x}{3x^2 - 1}$$

which is the required particular solution. (1)

42. Find the particular solution of the differential equation satisfying the given condition

$$\frac{dy}{dx} = y \tan x$$
, given that $y = 1$, when $x = 0$.

Delhi 2010

$$\frac{dy}{dx} = y \tan x$$

It can be written as
$$\frac{dy}{y} = \tan x \, dx$$
 (1)

On integrating both sides, we get

$$\int \frac{dy}{y} = \int \tan x \, dx$$

$$\Rightarrow \log|y| = \log|\sec x| + C$$
 ...(i) (1)

$$\left[\because \int \frac{1}{y} \, dy = \log|y| \text{ and } \int \tan x \, dx = \log|\sec x| \right]$$

Also, given that y = 1, when x = 0.

On putting x = 0 and y = 1 in Eq.(i), we get

$$\log 1 = \log (\sec 0^{\circ}) + C$$

 $0 = \log 1 + C$ [: $\sec 0^{\circ} = 1$] (1)

$$\Rightarrow \qquad C = 0 \qquad [\because \log 1 = 0]$$

On putting C = 0 in Eq. (i), we get the required particular solution as

$$\log|y| = \log|\sec x|$$

$$y = \sec x$$
(1)

which is the required solution.

43. Solve the following differential equation

$$\cos^2 x \frac{dy}{dx} + y = \tan x.$$

All India 2009; Delhi 2008, 2011, 2008C

Given differential equation is

$$\cos^2 x \frac{dy}{dx} + y = \tan x$$

On dividing both sides by $\cos^2 x$, we get

$$\frac{dy}{dx} + \frac{y}{\cos^2 x} = \frac{\tan x}{\cos^2 x}$$

$$\Rightarrow \frac{dy}{dx} + y \cdot \sec^2 x = \tan x \cdot \sec^2 x \qquad \dots (i)$$

$$\left[\because \frac{1}{\cos^2 x} = \sec^2 x\right]$$

which is the linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \sec^2 x \text{ and } Q = \tan x \cdot \sec^2 x \tag{1}$$

$$\therefore \qquad \mathsf{IF} = \mathrm{e}^{\int \sec^2 x \, dx} = \mathrm{e}^{\tan x}$$
$$\left[\because \int \sec^2 x \, dx = \tan x + C\right] \text{ (1)}$$

Now, solution of linear differential equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$y \times e^{\tan x} = \int \tan x \cdot \sec^2 x \cdot e^{\tan x} dx \dots (iii)$$

On putting $\tan x = t$

$$\Rightarrow$$
 sec²x dx = dt in Eq. (iii), we get

$$\therefore \qquad ye^{\tan x} = \int_{0}^{\infty} t e^{t} dt \qquad (1)$$

$$\Rightarrow$$
 $ye^{tan x} = t \int e^{t} dt - \int \left[\frac{d}{dt}(t) \int e^{t} dt \right] dt$

[using integration by parts in $\int te^t dt$]

$$\Rightarrow ye^{\tan x} = te^t - \int 1 \times e^t dt$$

$$\Rightarrow$$
 $ye^{\tan x} = te^t - e^t + C$

$$\therefore ye^{\tan x} = \tan x \cdot e^{\tan x} - e^{\tan x} + C [\because \tan x = t]$$

On dividing both sides by e^{tan x}, we get

$$y = \tan x - 1 + Ce^{-\tan x}$$

44. Solve the following differential equation

$$\sec x \frac{dy}{dx} - y = \sin x$$
. All India 2009C

Given differential equation is

$$\sec x \frac{dy}{dx} - y = \sin x$$

On dividing both sides by sec x, we get

$$\frac{dy}{dx} - \frac{y}{\sec x} = \frac{\sin x}{\sec x}$$

$$\Rightarrow \frac{dy}{dx} - y \cos x = \sin x \cos x \qquad \dots (i)$$

which is a linear differential equation of the

form
$$\frac{dy}{dx} + Py = Q \qquad ...(ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = -\cos x$$
 and $Q = \sin x \cos x$ (1)

$$\therefore \quad \mathsf{IF} = e^{\int -\cos x \, dx} = e^{-\sin x}$$
$$\left[\because \int \cos x \, dx = \sin x + C\right] \tag{1}$$

Now, solution of above equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$\therefore ye^{-\sin x} = \int \sin x \cos x e^{-\sin x} dx$$

On putting
$$\sin x = t \implies \cos x \, dx = dt$$

$$\therefore ye^{-\sin x} = \int_{1}^{t} e^{-t} dt$$
 (1)

$$\Rightarrow ye^{-\sin x} = t \int e^{-t} dt - \int \left[\frac{d}{dt}(t) \int e^{-t} dt \right] dt$$

[using integration by parts]

$$\Rightarrow ye^{-\sin x} = -te^{-t} - \int 1 \times (-e^{-t})dt$$
$$= -te^{-t} + \int e^{-t}dt$$

$$\Rightarrow$$
 $ye^{-\sin x} = -te^{-t} - e^{-t} + C$

$$\Rightarrow$$
 $ye^{-\sin x} = -\sin x e^{-\sin x} - e^{-\sin x} + C$

 $[\because \sin x = t]$

$$y = -\sin x - 1 + C e^{\sin x}$$
 (1)

which is the required solution.

45. Solve the following differential equation

$$(x \log x) \frac{dy}{dx} + y = 2 \log x$$
. Delhi 2009, 2009C

Given differential equation is

$$(x \log x) \frac{dy}{dx} + y = 2 \log x$$

On dividing both sides by $x \log x$, we get

$$\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x} \qquad \dots (i)$$

which is a linear differential equation of the torm

$$\frac{dy}{dx} + Py = Q \qquad ...(ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{1}{x \log x} \text{ and } Q = \frac{2}{x}$$
 (1)

$$\therefore \qquad \mathsf{IF} = e^{\int \frac{1}{x \log x} dx} = e^{\log \log x}$$
$$= \log x \qquad \qquad [\because e^{\log x} = x] \quad (1)$$

$$\int \frac{1}{x \log x} dx \Rightarrow \text{put log } x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \int \frac{1}{x \log x} dx = \int \frac{dt}{t} = \log|t| = \log|\log x|$$

Now, solution of above equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$\therefore y \times \log x = \int \frac{2}{x} \log x \, dx \tag{1}$$

$$\Rightarrow y \log x = \log x \int \frac{2}{x} dx$$
$$-\int \left[\frac{d}{dx} (\log x) \int \frac{2}{x} dx \right] dx$$

[using integration by parts]

$$\Rightarrow y \log x = \log x \cdot 2 \log x - \int \frac{1}{x} \cdot 2 \log x \, dx$$

$$\left[\because \int \frac{1}{x} dx = \log|x| + C\right]$$

$$\Rightarrow y \log x = 2 (\log x)^2 - 2 \int \frac{\log x}{x} dx$$

$$\Rightarrow y \log x = 2 (\log x)^2 - \frac{2(\log x)^2}{2} + C$$

$$\int \inf \int \frac{\log x}{x} dx, \text{ put } \log x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \int t \, dt = \frac{t^2}{2} = \frac{(\log x)^2}{2} + C$$

$$y = 2(\log x) - (\log x) + \frac{C}{\log x}$$

[dividing both sides by $\log x$] (1) which is the required solution.

46. Solve the following differential equation

$$x\frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right).$$

All India 2009

Given differential equation is

$$x\frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{y - x \tan\left(\frac{y}{x}\right)}{x} \dots (i)$$

which is a homogeneous differential equation.

On putting
$$y = vx$$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \tag{1}$$

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{vx - x \tan v}{x} = v - \tan v$$

$$\Rightarrow$$
 $x \frac{dv}{dx} = -\tan v$

$$\Rightarrow \frac{dv}{\tan v} = -\frac{dx}{x} \tag{1}$$

$$\Rightarrow \cot v \, dv = -\frac{dx}{x} \qquad \left[\because \frac{1}{\tan v} = \cot v\right]$$
(1)

On integrating both sides, we get

$$\int \cot v \, dv = -\int \frac{dx}{x}$$

$$\Rightarrow \log|\sin v| = -\log|x| + C$$

$$[\because \int \cot v \, dv = \log|\sin v| + C]$$

$$\Rightarrow \log |\sin v| + \log |x| = C$$

$$\Rightarrow$$
 $\log |x \sin v| = C$

$$[\because \log m + \log n = \log mn]$$

$$\therefore \qquad \log \left| x \sin \frac{y}{x} \right| = C \qquad \left[\because v = \frac{y}{x} \right]$$
 (1)

which is the required solution.

47. Solve the following differential equation

$$(1 + x^2) \frac{dy}{dx} + y = \tan^{-1} x.$$
 Delhi 2009

$$(1+x^2)\frac{dy}{dx} + y = \tan^{-1} x$$

On dividing both sides by $(1 + x^2)$, we get

$$\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{\tan^{-1}x}{1+x^2} \qquad ...(i)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = \frac{1}{1+x^2} \text{ and } Q = \frac{\tan^{-1} x}{1+x^2}$$
 (1)

: IF =
$$e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1} x}$$

 $\left[\because \int \frac{1}{1+x^2} dx = \tan^{-1} x + C \right]$ (1)

Now, solution of above equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

:
$$y \times e^{\tan^{-1} x} = \int \frac{\tan^{-1} x}{1 + x^2} \cdot e^{\tan^{-1} x} dx$$
 ...(iii)

On putting $tan^{-1}x = t$

$$\Rightarrow \frac{1}{1+x^2} dx = dt \tag{1}$$

in Eq. (iii), we get
$$ye^{\tan^{-1}x} = \int_{1}^{t} e^{t} dt$$

$$\Rightarrow ye^{\tan^{-1}x} = t \int e^{t}dt - \int \left[\frac{d}{dt}(t) \int e^{t}dt\right]dt$$

[using integration by parts]

$$\Rightarrow$$
 $ye^{tan^{-1}x} = te^t - \int 1 \times e^t dt$

$$\Rightarrow$$
 $ye^{\tan^{-1}x} = te^t - e^t + C$

$$\Rightarrow$$
 $ve^{\tan^{-1}x} = \tan^{-1}x \cdot e^{\tan^{-1}x} - e^{\tan^{-1}x} + C$

On dividing both sides by etan-1x, we get

$$y = \tan^{-1} x - 1 + Ce^{-\tan^{-1} x}$$
 (1)

which is the required solution.

48. Solve the following differential equation

$$\frac{dy}{dx} + y = \cos x - \sin x.$$

Delhi 2009

$$\frac{dy}{dx} + y = \cos x - \sin x \qquad \dots (i)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad ...(ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = 1 \text{ and } Q = \cos x - \sin x \qquad \textbf{(1)}$$

$$\therefore \qquad \mathsf{IF} = \mathsf{e}^{\int \mathsf{1} d\mathsf{x}} = \mathsf{e}^{\mathsf{x}} \tag{1}$$

Now, solution of above equation is given by

$$y \times IF = \int (Q \times IF) dx + C$$

$$ye^{x} = \int e^{x} (\cos x - \sin x) dx$$

$$\Rightarrow ye^{x} = \int e^{x} \cos x dx - \int e^{x} \sin x dx$$

$$\Rightarrow ye^{x} = \left[\cos x \int e^{x} dx - \int \left\{ \frac{d}{dx} (\cos x) \int e^{x} dx \right\} dx \right] - \int e^{x} \sin x dx$$

[applying integration by parts in the first integral]

$$\Rightarrow ye^{x} = [e^{x} \cos x - \int -\sin x \cdot e^{x} dx] - \int e^{x} \sin x \, dx \quad (1)$$

$$\Rightarrow ye^{x} = e^{x} \cos x + \int e^{x} \sin x \, dx$$
$$- \int e^{x} \sin x \, dx + C$$

$$\Rightarrow$$
 $ye^x = e^x \cos x + C$

On dividing both sides by ex, we get

$$y = \cos x + Ce^{-x}$$

which is the required solution.

(1)

49. Solve the following differential equation $\frac{dy}{dx}$ + 2y tan x = sin x. All India 2008

Given differential equation is

$$\frac{dy}{dx} + 2y \tan x = \sin x \qquad \dots (i)$$

which is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q \qquad \dots (ii)$$

On comparing Eqs. (i) and (ii), we get

$$P = 2 \tan x \text{ and } Q = \sin x \tag{1}$$

$$\therefore \quad \mathsf{IF} = e^{\int 2\tan x \, dx} = e^{2\log|\sec x|}$$
$$= e^{\log \sec^2 x} = \sec^2 x \tag{1}$$

Now, solution of above equation is given by $y \times IF = \int (Q \times IF) dx + C$

$$y \sec^2 x = \int \sin x \cdot \sec^2 x \, dx$$

$$\Rightarrow y \sec^2 x = \int \frac{\sin x}{\cos^2 x} dx$$
 (1)

$$\Rightarrow$$
 $y \sec^2 x = \int \sec x \tan x \, dx$

$$\left[\because \frac{\sin x}{\cos^2 x} = \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} = \tan x \sec x \right]$$

$$\Rightarrow$$
 y sec² x = sec x + C

[:
$$\int \sec x \tan x \, dx = \sec x + C$$
]

$$y = \frac{1}{\sec x} + \frac{c}{\sec^2 x}$$

$$\Rightarrow \qquad y = \cos x + C \cos^2 x \tag{1}$$

which is the required solution.

50. Solve the following differential equation

$$x^2 \frac{dy}{dx} = y^2 + 2xy$$
. All India 2008

$$x^2 \frac{dy}{dx} = y^2 + 2xy$$

which is a homogeneous differential equation as degree of each term is same in the equation.

Above equation can be written as

$$\frac{dy}{dx} = \frac{y^2 + 2xy}{x^2} \qquad \dots (i)$$

On putting
$$y = vx$$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$
(1)

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{v^2 x^2 + 2v x^2}{x^2} = v^2 + 2v$$

$$\Rightarrow v + x \frac{dv}{dx} = v^2 + 2v$$

$$\Rightarrow x \frac{dv}{dx} = v^2 + 2v - v \Rightarrow x \frac{dv}{dx} = v^2 + v$$

$$\Rightarrow \frac{dv}{dx} = \frac{dx}{dx} = \frac{dx}{dx}$$

$$\Rightarrow \frac{dv}{dx} = \frac{dx}{dx} = \frac{dx}{dx}$$

$$(1)$$

On integrating both sides, we get
$$\int \frac{dv}{v^2 + v} = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{dv}{v^2 + v + \frac{1}{4} - \frac{1}{4}} = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{dv}{\left(v + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2} = \int \frac{dx}{x}$$

$$\Rightarrow \frac{1}{2 \times \frac{1}{2}} \log \left| \frac{v + \frac{1}{2} - \frac{1}{2}}{v + \frac{1}{2} + \frac{1}{2}} \right| = \log |x| + C$$

$$\left[\cdot \cdot \cdot \int \frac{dx}{x} \right] = \frac{1}{2} \log \left| \frac{x - a}{x} \right| \qquad (1)$$

which is the required solution.

51. Solve the following differential equation $(x^2 - y^2) dx + 2xy dy = 0$, given that y = 1, when x = 1. Delhi 2008

Given differential equation is $(x^2 - y^2) dx + 2xy dy = 0$

Above equation can be written as

$$(x^2 - y^2) dx = -2xy dy \implies \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$$
 ...(i)

On putting
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (1)

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2vx^2} = \frac{v^2 - 1}{2v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v^2 - 1}{2v} - v$$

$$=\frac{v^2-1-2v^2}{2v}=\frac{-1-v^2}{2v}$$
 (1)

$$\Rightarrow \frac{2v}{v^2+1} = -\frac{dx}{x}$$

On integrating both sides, we get

$$\int \frac{2v}{v^2 + 1} dv = -\int \frac{dx}{x}$$

On putting $v^2 + 1 = t \implies 2v \, dv = dt$

$$\therefore \int \frac{dt}{t} = -\log|x| + C$$

$$\Rightarrow$$
 $\log |t| = -\log |x| + C$

$$\Rightarrow \log |v^2 + 1| + \log |x| = C \ [\because t = v^2 + 1]$$

$$\Rightarrow \log \left| \frac{y^2}{x^2} + 1 \right| + \log |x| = C \qquad \dots (ii)$$

$$\left[\because v = \frac{y}{x}\right]$$
(1)

Also, given that y = 1, when x = 1.

On putting x = 1 and y = 1 in Eq. (ii), we get

$$\log 2 + \log 1 = C \implies C = \log 2 \quad [\because \log 1 = 0]$$

On putting $C = \log 2$ in Eq. (ii), we get

$$\log\left|\frac{y^2 + x^2}{x^2}\right| + \log x = \log 2$$

$$\Rightarrow \log \left| x \left(\frac{x^2 + y^2}{x^2} \right) \right| = \log 2$$

 $[: \log m + \log n = \log mn]$

$$\Rightarrow \log \left| \frac{x^2 + y^2}{x} \right| = \log 2 \Rightarrow x^2 + y^2 = 2x \quad (1)$$

which is the required solution.

52. Solve the following differential equation

$$\frac{dy}{dx} = \frac{x(2y - x)}{x(2y + x)}$$
, if $y = 1$, when $x = 1$.

Delhi 2008

Given differential equation is

$$\frac{dy}{dx} = \frac{x(2y - x)}{x(2y + x)} \Rightarrow \frac{dy}{dx} = \frac{2xy - x^2}{2xy + x^2} \qquad \dots (i)$$

which is a homogeneous differential equation because each term of numerator and denominator have same degree.

On putting
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (1)

in Eq. (i), we get

$$v + x \frac{dv}{dx} = \frac{2vx^2 - x^2}{2vx^2 + x^2} = \frac{2v - 1}{2v + 1}$$

$$v + x \frac{dv}{dx} = \frac{2v - 1}{2v + 1}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2v - 1}{2v + 1} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2v - 1 - 2v^2 - v}{2v + 1}$$

$$\frac{2v + 1}{2v^2 + v + 1} dv = -\frac{dx}{v}$$

On integrating both sides, we get

$$\int \frac{2v+1}{2v^2 - v + 1} dv = -\int \frac{dx}{x}$$

$$\Rightarrow \qquad I = -\log|x| + C \qquad ...(ii)$$
where,
$$I = \int \frac{2v+1}{2v^2 - v + 1} dv$$

Let
$$2v + 1 = A \cdot \frac{d}{dv} (2v^2 - v + 1) + B$$

 $\Rightarrow 2v + 1 = A(4v - 1) + B$...(iii)

On comparing coefficients of v and constants from both sides, we get

$$4A = 2$$

$$\Rightarrow A = \frac{1}{2} \text{ and } -A + B = 1$$

$$\Rightarrow \qquad -\frac{1}{2} + B = 1 \quad \Rightarrow \quad B = \frac{3}{2}$$

On putting $A = \frac{1}{2}$ and $B = \frac{3}{2}$ in Eq. (iii), we

get

$$2v + 1 = \frac{1}{2}(4v - 1) + \frac{3}{2}$$
 (1)

On integrating both sides, we get

$$I = \int \frac{2v+1}{2v^2 - v + 1} dv$$

$$\Rightarrow I = \int \frac{\frac{1}{2}(4v - 1) + \frac{3}{2}}{2v^2 - v + 1} dv$$

$$\Rightarrow I = \frac{1}{2} \int \frac{4v - 1}{2v^2 - v + 1} dv + \frac{3}{2} \int \frac{dv}{2v^2 - v + 1}$$

$$\Rightarrow I = \frac{1}{2} \log|2v^2 - v + 1| + \frac{3}{4} \int \frac{dv}{v^2 - \frac{v}{2} + \frac{1}{2}}$$

$$\because \int \frac{4v - 1}{2v^2 - v + 1} dv \Rightarrow \operatorname{put} 2v^2 - v + 1 = t$$

$$\Rightarrow (4v - 1) dv = dt$$
then
$$\int \frac{dt}{t} = \log|t| = \log|2v^2 - v + 1|$$

$$\Rightarrow I = \frac{1}{2} \log |2v^2 - v + 1|$$

$$+\frac{3}{4}\int \frac{dv}{v^2 - \frac{1}{2}v + \frac{1}{2} + \frac{1}{16} - \frac{1}{16}}$$

$$= \frac{1}{2}\log|2v^2 - v + 1| + \frac{3}{4}\int \frac{dv}{\left(v - \frac{1}{4}\right)^2 + \frac{7}{16}}$$

$$= \frac{1}{2} \log |2v^2 - v + 1| + \frac{3}{4} \int \frac{av}{\left(v - \frac{1}{4}\right)^2 + \left(\frac{\sqrt{7}}{4}\right)^2}$$
(1/2)

$$\Rightarrow I = \frac{1}{2}\log|2v^2 - v + 1| + \frac{3}{4} \times \frac{4}{\sqrt{7}} \tan^{-1} \left(\frac{v - \frac{1}{4}}{\frac{\sqrt{7}}{4}} \right)$$

$$\left[\because \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C\right]$$

$$\Rightarrow I = \frac{1}{2} \log |2v^2 - v + 1| + \frac{3}{\sqrt{7}} \tan^{-1} \left(\frac{4v - 1}{\sqrt{7}} \right)$$

On putting the value of I in Eq. (ii), we get

$$\frac{1}{2}\log|2v^2 - v + 1| + \frac{3\sqrt{7}}{7}\tan^{-1}\left(\frac{4v - 1}{\sqrt{7}}\right)$$
$$= -\log|x| + C \tag{1/2}$$

$$\Rightarrow \frac{1}{2}\log\left|\frac{2y^2}{x^2} - \frac{y}{x} + 1\right| + \frac{3\sqrt{7}}{7}\tan^{-1}\left(\frac{\frac{4y}{x} - 1}{\sqrt{7}}\right)$$

$$= -\log|x| + C \qquad \left[\because \text{put } v = \frac{y}{x}\right]$$

$$\Rightarrow \frac{1}{2}\log\left|\frac{2y^2}{x^2} - \frac{y}{x} + 1\right| + \frac{3\sqrt{7}}{7}\tan^{-1}\left(\frac{4y - x}{\sqrt{7} \cdot x}\right)$$

Also, given that y = 1, when x = 1.

On putting x = 1 and y = 1 in Eq. (iv), we get

 $= -\log|x| + C$

$$\frac{1}{2}\log|2| + \frac{3\sqrt{7}}{7}\tan^{-1}\left(\frac{3}{\sqrt{7}}\right) = -\log 1 + C$$

$$\frac{1}{2} \log 2 + \frac{3\sqrt{7}}{3} \tan^{-1} \left(\frac{3}{2} \right) = C[\because \log 1 = 0]$$

...(iv)

$$\frac{1}{2}$$
 $\frac{1062}{7}$ $\frac{1}{7}$ $\frac{1}{\sqrt{7}}$

On putting the value of C in Eq. (iv), we get

$$\frac{1}{2} \log \left(\frac{2y^2 - xy + x^2}{x^2} \right) + \frac{3\sqrt{7}}{7} \tan^{-1} \left(\frac{4y - x}{\sqrt{7}x} \right)$$

$$= -\log|x| + \frac{1}{2}\log 2 + \frac{3\sqrt{7}}{7}\tan^{-1}\left(\frac{3}{\sqrt{7}}\right)$$

$$\Rightarrow \log \left(\frac{2y^2 - xy + x^2}{x^2} \right)^{1/2} + \log x - \log (2)^{1/2}$$

$$= \frac{3\sqrt{7}}{7} \left[\tan^{-1} \left\{ \frac{\frac{3}{\sqrt{7}} - \left(\frac{4y - x}{\sqrt{7}x}\right)}{1 + \frac{3}{\sqrt{7}} \cdot \left(\frac{4y - x}{\sqrt{7}x}\right)} \right\} \right]$$

$$\left[\because \tan^{-1} A - \tan^{-1} B = \tan^{-1} \left(\frac{A - B}{1 + AB} \right) \right] \quad (1/2)$$

$$\Rightarrow \log (2y^2 - xy + x^2)^{1/2} - \log \sqrt{2}$$

$$= \frac{3\sqrt{7}}{7} \tan^{-1} \left[\frac{(4x - 4y) \cdot \sqrt{7}}{4x + 12y} \right]$$

$$\left[\because \log\left(\frac{2y^2 - xy + x^2}{x^2}\right) = \log(2y^2 - xy + x^2)^{1/2}\right] = \log(2y^2 - xy + x^2)^{1/2} - \log x$$

$$\Rightarrow \log \sqrt{\frac{2y^2 - xy + x^2}{2}}$$
$$= \frac{3\sqrt{7}}{7} \tan^{-1} \left(\frac{(x - y) \cdot \sqrt{7}}{x + 3y} \right)$$

$$\Rightarrow \log \sqrt{\frac{2y^2 - xy + x^2}{2}}$$

$$= \frac{3\sqrt{7}}{7} \tan^{-1} \left[\frac{\sqrt{7}x - \sqrt{7}y}{x + 3y} \right]$$
 (1/2)

which is the required solution.

6 Marks Questions

53. Find the particular solution of the differential equation $(3xy + y^2)dx + (x^2 + xy)dy = 0$, for x = 1 and y = 1. Delhi 2013C

Given differential equation is

$$(3x^2 + y^2)dx + (x^2 + xy)dy = 0$$

It can be rewritten as $\frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy}$...(i) which is a homogeneous differential equation of degree 2.

On putting
$$y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$

in Eq.(i), we get
$$v + x \frac{dv}{dx} = -\frac{3vx^2 + v^2x^2}{x^2 + vx^2}$$

$$\Rightarrow \qquad x \frac{dv}{dx} = -\frac{3v + v^2}{1 + v} - v$$

$$\Rightarrow x \frac{dv}{dx} = -\left(\frac{3v + v^2 + v + v^2}{1 + v}\right)$$
 (1)

$$\Rightarrow x \frac{dv}{dx} = -\left(\frac{2v^2 + 4v}{1 + v}\right) \Rightarrow \frac{(1 + v)dv}{2(v^2 + 2v)} = -\frac{dx}{x}$$

On integrating both sides, we get

$$\int \frac{1+v}{2(v^2+2v)} dv = -\int \frac{dx}{x} \qquad ...(ii) (1)$$

Again, put
$$v^2 + 2v = z \Rightarrow (2v + 2)dv = dz$$

$$\Rightarrow \qquad (1+v)dv = \frac{dz}{2}$$

Then, Eq. (ii) becomes,

$$\int \frac{1}{2} \times \frac{dz}{2z} = -\int \frac{dx}{x}$$

$$\Rightarrow \frac{1}{4} \log|z| = -\log|x| + \log|C|$$

$$\Rightarrow \frac{1}{4} [\log|z| + 4\log|x|] = \log|C|$$

$$\Rightarrow \log|zx^4| = 4\log|C|$$

$$\Rightarrow zx^4 = C^4 = C_1 zx^4 = C_1$$
where,
$$C_1 = C^4$$

$$\Rightarrow x^4(v^2 + 2v) = C_1 \quad [\text{put } z = v^2 + 2v]$$

$$\Rightarrow x^4\left(\frac{y^2}{x^2} + \frac{2y}{x}\right) = C_1 \left[\text{put } v = \frac{y}{x}\right] ... \text{(iii) (1)}$$

Also, given that y = 1 for x = 1.

On putting x = 1 and y = 1 in Eq. (iii), we get

$$1\left(\frac{1}{1} + \frac{2}{1}\right) = C_1$$

$$\Rightarrow \qquad C_1 = 3 \tag{1}$$

Also, given that y = 1 for x = 1.

So, on putting $C_1 = 3$ in Eq. (iii), we get

$$x^4 \left(\frac{y^2}{x^2} + \frac{2y}{x} \right) = 3 \implies y^2 x^2 + 2y x^3 = 3$$
 (1)

which is the required particular solution.

54. Show that the differential equation $2ye^{x/y}dx+(y-2xe^{x/y})dy=0$ is homogeneous. Find the particular solution of this differential equation, given that x=0, when y=1.

HOTS; Delhi 2013

Firstly, replace x by λx and y by λy in f(x, y) of given differential equation to check that it is homogeneous. If it is homogeneous, then put x = vy and $\frac{dx}{dv} = v + y\frac{dv}{dy}$ and then solve.

Given differential equation is $2y e^{x/y} dx + (y - 2x e^{x/y}) dy = 0$. It can be written as

$$\frac{dx}{dy} = \frac{2xe^{x/y} - y}{2ye^{x/y}} \qquad \dots (i)$$
Let $F(x, y) = \frac{\left(2xe^{\frac{x}{y}} - y\right)}{\left(2ye^{\frac{x}{y}}\right)}$

On replacing x by λx and y by λy both sides, we get

$$F(\lambda x, \lambda y) = \frac{\left(2\lambda x e^{\frac{\lambda x}{\lambda y}} - \lambda y\right)}{\left(2\lambda y e^{\frac{\lambda x}{\lambda y}}\right)}$$

$$\Rightarrow F(\lambda x, \lambda y) = \frac{\lambda (2xe^{x/y} - y)}{\lambda (2ye^{x/y})} = \lambda^0 [F(x, y)]$$
 (1)

Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential (1) equation.

To solve it, put x = vy

$$\Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$$
 (1/2)

in Eq.(i), we get
$$v + y \frac{dv}{dy} = \frac{2ve^{v} - 1}{2e^{v}}$$

$$\Rightarrow y \frac{dv}{dy} = \frac{2ve^{v} - 1}{2e^{v}} - v = \frac{2ve^{v} - 1 - 2ve^{v}}{2e^{v}}$$

$$\Rightarrow 2e^{v}dv = \frac{-dy}{v}$$
(1)

On integrating both sides, we get

$$\int 2e^{v} dv = -\int \frac{dy}{y} \implies 2e^{v} = -\log|y| + C$$

Now, replace v by $\frac{x}{y}$, we get $2e^{x/y} + \log|y| = C \qquad ...(ii) (1\frac{1}{2})$

Also, given that x = 0, when y = 1.

On substituting x = 0 and y = 1 in Eq. (ii), we get $2e^0 + \log |1| = C \Rightarrow C = 2$

On substituting the value of C in Eq. (ii), we get $2e^{x/y} + \log |y| = 2$

which is the required particular solution of the given differential equation. (1)

55. Show that the differential equation

$$x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0$$
 is homogeneous.

Find the particular solution of this differential equation, given that x=1, when $y=\frac{\pi}{2}$. Delhi 2013

$$x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) = y \sin\left(\frac{y}{x}\right) - x \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \frac{1}{\sin\frac{y}{x}}$$
...(i)
$$\left[\text{dividing both sides by } x \sin\left(\frac{y}{x}\right)\right]$$
Let
$$(x, y) = \frac{y}{x} - \frac{1}{\sin\frac{y}{x}}$$

On replacing x by λx and y by λy on both sides, we get

$$F(\lambda x, \lambda y) = \frac{\lambda y}{\lambda x} - \frac{1}{\sin \frac{\lambda y}{\lambda x}} = \lambda^0 \left(\frac{y}{x} - \frac{1}{\sin \frac{y}{x}} \right)$$
$$= \lambda^0 F(x, y)$$

So, given differential equation is homogeneous.

(2)

On putting y = vx

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \text{ in Eq.(i), we get}$$

$$v + x \frac{dv}{dx} = v - \frac{1}{\sin v}$$
(1)

$$\Rightarrow x \frac{dv}{dx} = -\frac{1}{\sin v} \Rightarrow \sin v \, dv = -\frac{dx}{x}$$

On integrating both sides, we get

$$\int \sin v \, dv = -\int \frac{dx}{x}$$

$$\Rightarrow -\cos v = -\log|x| + C$$

$$\Rightarrow -\cos y/x = -\log|x| + C \left[\because v = \frac{y}{x}\right] \text{ (11/2) ...(ii)}$$

Also, given that x = 1, when $y = \frac{\pi}{2}$.

On putting x = 1 and $y = \frac{\pi}{2}$ in Eq. (ii), we get

$$-\cos\left(\frac{\pi}{2}\right) = -\log|1| + C$$
$$-0 = -0 + C \implies C = 0$$

On putting the value of C in Eq. (ii), we get

$$\cos \frac{y}{x} = \ln |x|$$

which is the required solution.

 $(1\frac{1}{2})$

56. Find the particular solution of the differential equation $\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y$, $(y \neq 0)$, given that x=0, when $y=\frac{\pi}{2}$.

All India 2013

$$\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, (y \neq 0)$$

which is a linear differential equation.

On comparing with $\frac{dx}{dy} + Px = Q$, we get

$$P = \cot y \text{ and } Q = 2y + y^2 \cot y$$

$$\therefore IF = e^{\int Pdy} = e^{\int \cot y \, dy} = e^{\log \sin y} = \sin y \qquad (1\frac{1}{2})$$

Now, the solution of above differential equation is given by

$$x \cdot (IF) = \int Q \cdot (IF) \, dy + C$$

$$x \sin y = \int (2y + y^2 \cot y) \sin y \, dy + C$$

$$= 2 \int y \sin y \, dy + \int y^2 \cos y \, dy + C$$

$$= 2 \int y \sin y \, dy + y^2 \int \cos y \, dy$$

$$- \int \left[\left(\frac{d}{dy} y^2 \right) \int \cos y \, dy \right] dy + C$$

[using integration by parts in second integral] $= 2 \int y \sin y \, dy + y^2 \sin y - 2 \int y \sin y \, dy + C$ $= y^2 \sin y + C$ $\Rightarrow x \sin y = y^2 \sin y + C \qquad ...(i) (2)$

Also, given that x = 0, when $y = \frac{\pi}{2}$.

On putting x = 0 and $y = \frac{\pi}{2}$ in Eq. (i), we get

$$0 = \left(\frac{\pi}{2}\right)^2 \sin \frac{\pi}{2} + C \Rightarrow C = -\frac{\pi^2}{4}$$
 (1/2)

On putting the value of C in Eq. (i), we get

$$x \sin y = y^2 \sin y - \frac{\pi^2}{4} \Rightarrow x = y^2 - \frac{\pi^2}{4} \cdot \text{cosecy}$$

which is required particular solution of given differential equation. (2)

57. Show that the differential equation $[x\sin^2\left(\frac{y}{x}\right) - y]dx + xdy = 0 \text{ is homogeneous.}$

Find the particular solution of this differential equation, given that

$$y = \frac{\pi}{4}$$
, when $x = 1$.

All India 2013

$$\left[x \sin^2\left(\frac{y}{x}\right) - y\right] dx + x dy = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x} \qquad ...(i)$$
Let
$$F(x, y) = \frac{y - x \sin^2\left(\frac{y}{x}\right)}{x}$$

On replacing x by λx and y by λy both sides, we get

$$F(\lambda x, \lambda y) = \frac{\lambda \left[y - x \sin^2 \left(\frac{y}{x} \right) \right]}{\lambda x} = \lambda^0 \left[F(x, y) \right]$$

Thus, given differential equation is a homogeneous differential equation. (1)

On putting
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 in Eq. (i), we

get

$$v + x \frac{dv}{dx} = \frac{vx - x \sin^2\left(\frac{vx}{x}\right)}{x}$$

$$\Rightarrow v + x \frac{dv}{dx} = v - \sin^2 v \implies x \frac{dv}{dx} = -\sin^2 v$$

$$\Rightarrow \cos^2 v dv = \frac{-dx}{x}$$
(2)

On intergrating both sides, we get

$$\int \csc^2 v \, dv + \int \frac{dx}{x} = 0$$

$$\Rightarrow \qquad -\cot v + \log|x| = C$$

$$\Rightarrow \qquad -\cot\left(\frac{y}{x}\right) + \log|x| = C \left[\because v = \frac{y}{x}\right]...(ii)$$

Also, given that, $y = \frac{\pi}{4}$, when x = 1.

On putting x = 1 and $y = \frac{\pi}{4}$, in Eq. (ii), we get

$$-\cot\left(\frac{\pi}{4}\right) + \log|1| = C \tag{2}$$

$$\Rightarrow \qquad C = -1 \qquad \left[\because \cot \frac{\pi}{4} = 1 \right]$$

On putting the value of C in Eq. (ii), we get

$$-\cot\left(\frac{y}{x}\right) + \log|x| = -1$$

$$\Rightarrow$$
 1+ log |x| - cot $\left(\frac{y}{x}\right)$ = 0

which is the required particular solution of given differential equation. (1)

58. Find the particular solution of the differential equation $(\tan^{-1} y - x)dy = (1+y^2)dx$, given that x=0, when y=0. All India 2013

Given differential equation is

$$(\tan^{-1} y - x) dy = (1 + y^2) dx$$

$$\Rightarrow \frac{\tan^{-1}y - x}{1 + y^2} = \frac{dx}{dy} \Rightarrow \frac{dx}{dy} = \frac{-x}{1 + y^2} + \frac{\tan^{-1}y}{1 + y^2}$$

$$\Rightarrow \frac{dx}{dy} + \frac{1}{1+y^2} \cdot x = \frac{\tan^{-1}y}{1+y^2}$$

which is a linear differential equation of first order. (1)

On comparing with $\frac{dx}{dy} + Px = Q$, we get

$$P = \frac{1}{1+y^2}$$
 and $Q = \frac{\tan^{-1} y}{1+y^2}$

: IF =
$$e^{\int Pdy} = e^{\int \frac{dy}{1+y^2}} = e^{\tan^{-1}y}$$
 (1)

Now, solution of above differential equation is given by

$$x \cdot (IF) = \int Q \cdot (IF) \, dy + C$$

$$\Rightarrow xe^{\tan^{-1} y} = \int \frac{\tan^{-1} y}{1 + y^2} \times e^{\tan^{-1} y} + C$$
 (1)

On putting $t = \tan^{-1} y \Rightarrow dt = \frac{1}{1+y^2} dy$

$$\therefore x \cdot e^{\tan^{-1} y} = \int t \cdot e^t dt + C$$

$$\Rightarrow x \cdot e^{\tan^{-1} y} = t \cdot e^t - \int 1 \cdot e^t dt + C$$

[using integration by parts]

$$\Rightarrow x \cdot e^{\tan^{-1} y} = t \cdot e^t - e^t + C$$

$$\Rightarrow x \cdot e^{\tan^{-1} y} = (\tan^{-1} y - 1) e^{\tan^{-1} y} + C ...(i)$$
 (1)

Also, given that, when x = 0, then y = 0.

On putting x = 0, y = 0 in Eq. (i), we get

$$0 = (\tan^{-1} 0 - 1)e^{\tan^{-1} 0} + C$$

$$\Rightarrow$$
 0 = (0 - 1) $e^0 + C \Rightarrow 0 = (0 - 1) \cdot 1 + C$

$$\Rightarrow C=1 \tag{1}$$

On putting the value of C in Eq. (i), we get

$$x \cdot e^{\tan^{-1} y} = (\tan^{-1} y - 1) \cdot e^{\tan^{-1} y} + 1$$

$$\Rightarrow x = \tan^{-1} y - 1 + e^{-\tan^{-1} y}$$

which is the required particular solution of the differential equation. (1)